Differentiation of sow and mouse ovarian granulosa cells exposed to zearalenone in vitro using RNA-seq gene expression

2018 ◽  
Vol 350 ◽  
pp. 78-90 ◽  
Author(s):  
Guo-Liang Zhang ◽  
Jun-Lin Song ◽  
Yi Zhou ◽  
Rui-Qian Zhang ◽  
Shun-Feng Cheng ◽  
...  
Oncotarget ◽  
2017 ◽  
Vol 8 (38) ◽  
pp. 64001-64014 ◽  
Author(s):  
Guo-Liang Zhang ◽  
Rui-Qian Zhang ◽  
Xiao-Feng Sun ◽  
Shun-Feng Cheng ◽  
Yu-Feng Wang ◽  
...  

Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 374 ◽  
Author(s):  
Nina Zhang ◽  
Liqiang Wang ◽  
Guoya Luo ◽  
Xiaorong Tang ◽  
Lizhu Ma ◽  
...  

In the present study, AA was used to challenge bovine ovarian granulosa cells in vitro and the related parameters of cellular and molecular biology were measured. The results indicated that lower doses of AA increased survival of bovine granulosa cells whereas higher doses of AA suppressed survival. While lower doses of AA induced accumulation of lipid droplet in granulosa cells, the higher dose of AA inhibited lipid accumulation, and AA increased abundance of FABP3, CD36 and SLC27A1 mRNA. Higher doses of AA decreased the secretion of E2 and increased the secretion of P4 accompanied by down-regulation of the mRNA abundance of CYP19A1, FSHR, HSD3B1 and STAR in granulosa cells. The signaling pathways employed by AA in the stimulation of genes expression included both ERK1/2 and Akt. Together, AA specifically affects physiological features, gene expression levels and steroid hormone secretion, and thus altering the functionality of granulosa cells of cattle.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A772-A773
Author(s):  
Dimiter Bogdanov Avtanski ◽  
Karina Ziskovich ◽  
Tomer Singer ◽  
Ariel Yeshua ◽  
Tal Cantor ◽  
...  

Abstract Fertility and energy metabolism are closely associated, and the cytokines produced by the adipose and muscle tissue play a role in this association. Leptin, predominantly produced by the white adipose tissue, and irisin, produced by the brown adipose and skeletal muscle tissues, are cytokines that are important in balancing energy metabolism. This study aimed to investigate the effects of leptin and irisin on steroidogenic enzyme gene expression in human ovarian granulosa cells in vitro. Granulosa cells were retrieved and isolated from ovarian follicular fluid during in vitro fertilization (IVF) procedures. Cells were placed in primary in vitro cultures and treated with increasing concentrations of leptin (25, 50, 100, 200, and 400 ng/ml) or irisin (125, 250, 500, 1,000, and 2,000 ng/ml) for 24, 48, and 72 hours. mRNA expression levels of CYP11A1, CYP19A1, CYP21A2, HSD3B1, and HSD17B3 were measured by qRT-PCR analysis. Leptin treatment of granulosa cells resulted in significant upregulation of CYP21A2 mRNA levels, while irisin significantly downregulated mRNA levels of CYP11A1, CYP19A1, and HSD3B1. Taken together, these early experiments demonstrate that leptin and irisin may affect steroid hormone production in the ovary by targeting the gene expression of key steroidogenic enzymes. Additional experiments are in progress.


2020 ◽  
Vol 8 (4) ◽  
pp. 176-182
Author(s):  
Ievgeniia Kocherova ◽  
Katarzyna Stefańska ◽  
Rut Bryl ◽  
Joanna Perek ◽  
Wojciech Pieńkowski ◽  
...  

AbstractOvarian granulosa cells (GCs) play a crucial role in oocyte maturation, creating a favorable microenvironment around the oocyte. Therefore, enhanced apoptosis and GCs loss may negatively affect the intra-follicular milieu and compromise the oocyte quality, reducing pregnancy chances. Based on the RT-qPCR method, the present research revealed the differential expression of apoptosis-related genes (BCL2, BAX, p53, CASP9) during the seven days of primary in vitro culture of GCs isolated from patients undergoing in vitro fertilization (IVF) procedure. Individual gene expression changes may reflect the GCs survival and/or apoptotic status at different time points.Running title: Apoptosis-related genes expression in granulosa cells in vitro


2021 ◽  
Author(s):  
◽  
Zaramasina Clark

<p>The number of cycles of assisted reproductive technologies (ART) performed increased by ~9.5 % globally between 2008 and 2010. In spite of this, the success rate in terms of delivery was only ~19.0 % (Dyer et al., 2016). This discrepancy between the demand for, and success of, these technologies necessitates the development of tools to improve ART efficiency. To facilitate this, a better understanding of how the microenvironment changes within the developing follicle to culminate in a mature, developmentally-competent oocyte is required. This study employed an in vivo and in vitro ovine model to investigate the relationship between the surrounding microenvironment and oocyte maturation, and in particular, the attainment of oocyte developmental competency and high-quality embryos.  The first objective of this PhD study was to comprehensively investigate the changing microenvironment of in vivo matured, presumptive preovulatory (PPOV) follicles from wild-type (++) and high ovulation rate (OR; I+B+) ewes. The high OR ewes were heterozygous carriers of mutations in BMP15 (I+) and BMPRIB (B+). Functional differences in follicular somatic (granulosa and cumulus) cells between these genotypes, including differential gonadotropin responsiveness of granulosa cells, composition of follicular fluid and gene expression profiles in cumulus cells were evident. These differences emerged as part of a compensatory mechanism by which oocytes from smaller follicles, containing fewer granulosa cells, achieved developmental competency in I+B+ ewes.  The second objective of this PhD study was to develop new approaches for improving current in vitro maturation (IVM) strategies. The first approach utilised in this study focused on developing biomarkers that could be used to improve prediction of developmental competency in oocytes and in vitro produced embryos. This involved interrogating the hypothesis that a combination of molecular and morphokinetic biomarkers would better predict the developmental competency of oocytes and embryos compared to using these biomarkers alone. The second approach utilised in this PhD study tested the effects of modulating IVM conditions to better mimic the follicular microenvironment of a high, compared to a low, OR species on oocyte developmental competency and embryo quality. This involved supplementing IVM media with different ratios of two oocyte-secreted growth factors, i.e. GDF9:BMP15, that were representative of low or high OR species. These approaches demonstrated significant potential and warrant further investigation.  The most significant finding of this study was that despite variances in the surrounding microenvironment during in vivo and in vitro oocyte maturation that culminated in differential gene expression patterns in cumulus cells, and divergent gonadotropin-responsiveness of granulosa cells, the gene expression signatures of developmentally-competent oocytes and the morphokinetics of high-quality embryos were unaltered. This confirms the value of developing such biomarkers for oocyte development competency and embryo quality that remain unaltered despite a changing surrounding environment. Interestingly, simulating the ratio of GDF9:BMP15 that oocytes from high OR species are exposed to during maturation improved developmental competency in oocytes as demonstrated by increased blastocyst rates. Furthermore, this study has demonstrated that combinations of molecular (cumulus cell gene expression) and morphokinetic biomarkers improved the ability to predict developmental competency in oocytes and embryos. Overall, this study revealed novel information regarding the follicular microenvironment during final maturation and identified several novel approaches to improving the efficiency of ART.</p>


2021 ◽  
Author(s):  
Jozsef Bodis ◽  
Endre Sulyok ◽  
Akos Varnagy ◽  
Viktória Prémusz ◽  
Krisztina Godony ◽  
...  

Abstract BackgroundThis observational clinical study evaluated the expression levels and predictive values of some apoptosis-related genes in granulosa cells (GCs) and follicular fluid (FF) of women undergoing in vitro fertilization (IVF).Methods GCs and FF were obtained at oocyte retrieval from 31 consecutive patients with heterogeneous infertility diagnosis (age: 34.3±5.8 years, body mass index: 24.02±3.12 kg/m2, duration of infertility: 4.2±2.1 years). mRNA expression of pro-apoptotic (BAX, CASP3, CASP8) and anti-apoptotic (BCL2, AMH, AMHR, FSHR, LHR, CYP19A1) factors was determined by quantitative RT-PCR using ROCHE LightCycler 480. Results No significant difference in GC or FF mRNA expression of pro- and anti-apoptotic factors could be demonstrated between IVF patients with (9 patients) or without (22 patients) clinical pregnancy. Each transcript investigated was detected in FF, but their levels were markedly reduced and independent of those in GCs. The number of retrieved oocytes was positively associated with GC AMHR (r=0.393, p=0.029), but the day of embryo transfer was negatively associated with GC LHR (r=-0.414, p=0.020) and GC FSHR transcripts (r=-0.535, p=0.002). When pregnancy positive group was analysed separately the impact of apoptosis- related gene expressions on some selected measures of IVF success could be observed. Strong positive relationship was found between gene expression levels of pro- and anti-apoptotic factors in GCs.ConclusionOur study provides only marginal evidences for the apoptosis dependence of IVF outcome and suggests that the apoptosis process induces adaptive increases of the anti-apoptotic gene expression to attenuate apoptosis and to protect cell survival.


2019 ◽  
Author(s):  
Ugur M. Ayturk ◽  
Joseph P. Scollan ◽  
Alexander Vesprey ◽  
Christina M. Jacobsen ◽  
Paola Divieti Pajevic ◽  
...  

ABSTRACTSingle cell RNA-seq (scRNA-seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-seq on freshly recovered long bone endocortical cells from mice that received either vehicle or Sclerostin-neutralizing antibody for 1 week. Bone anabolism-associated transcripts were also not significantly increased in immature and mature osteoblasts recovered from Sclerostin-neutralizing antibody treated mice; this is likely a consequence of being underpowered to detect modest changes in gene expression, since only 7% of the sequenced endocortical cells were osteoblasts, and a limited portion of their transcriptomes were sampled. We conclude that scRNA-seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required.


2019 ◽  
Author(s):  
Marcus Alvarez ◽  
Elior Rahmani ◽  
Brandon Jew ◽  
Kristina M. Garske ◽  
Zong Miao ◽  
...  

AbstractSingle-nucleus RNA sequencing (snRNA-seq) measures gene expression in individual nuclei instead of cells, allowing for unbiased cell type characterization in solid tissues. Contrary to single-cell RNA seq (scRNA-seq), we observe that snRNA-seq is commonly subject to contamination by high amounts of extranuclear background RNA, which can lead to identification of spurious cell types in downstream clustering analyses if overlooked. We present a novel approach to remove debris-contaminated droplets in snRNA-seq experiments, called Debris Identification using Expectation Maximization (DIEM). Our likelihood-based approach models the gene expression distribution of debris and cell types, which are estimated using EM. We evaluated DIEM using three snRNA-seq data sets: 1) human differentiating preadipocytes in vitro, 2) fresh mouse brain tissue, and 3) human frozen adipose tissue (AT) from six individuals. All three data sets showed various degrees of extranuclear RNA contamination. We observed that existing methods fail to account for contaminated droplets and led to spurious cell types. When compared to filtering using these state of the art methods, DIEM better removed droplets containing high levels of extranuclear RNA and led to higher quality clusters. Although DIEM was designed for snRNA-seq data, we also successfully applied DIEM to single-cell data. To conclude, our novel method DIEM removes debris-contaminated droplets from single-cell-based data fast and effectively, leading to cleaner downstream analysis. Our code is freely available for use at https://github.com/marcalva/diem.


Sign in / Sign up

Export Citation Format

Share Document