scholarly journals Fundamental kinematics laws of interstitial fluid flows on vascular walls

Author(s):  
Yajun Yin ◽  
Hongyi Li ◽  
Gang Peng ◽  
Xiaobin Yu ◽  
Yiya Kong
1986 ◽  
Vol 108 (2) ◽  
pp. 123-130 ◽  
Author(s):  
A. F. Mak

Articular cartilage was modeled rheologically as a biphasic poroviscoelastic material. A specific integral-type linear viscoelastic model was used to describe the constitutive relation of the collagen-proteoglycan matrix in shear. For bulk deformation, the matrix was assumed either to be linearly elastic, or viscoelastic with an identical reduced relaxation spectrum as in shear. The interstitial fluid was considered to be incompressible and inviscid. The creep and the rate-controlled stressrelaxation experiments on articular cartilage under confined compression were analyzed using this model. Using the material data available in the literature, it was concluded that both the interstitial fluid flow and the intrinsic matrix viscoelasticity contribute significantly to the apparent viscoelastic behavior of this tissue under confined compression.


2008 ◽  
Vol 385-387 ◽  
pp. 137-140
Author(s):  
C. Arson ◽  
B. Gatmiri

This paper presents a damage model dedicated to unsaturated brittle rocks. It mixes phenomenological and micro-mechanical concepts, and is formulated based on the use of independent state variables (net stress and suction). The expression of the liquid permeability is modified in order to represent the influence of fracturing on interstitial fluid flows.


1994 ◽  
Vol 74 (1) ◽  
pp. 163-219 ◽  
Author(s):  
B. Rippe ◽  
B. Haraldsson

In this review we summarized the evidence favoring the concept that the major plasma proteins are passively transported across vascular walls through water-filled pathways by means of convection and diffusion. With regard to solute transport, a majority of microvascular walls seems to show a bimodal size selectivity. This implies the presence of a high frequency of functional small pores, restricting proteins, and an extremely low number of non-size-selective pathways, permitting the passage of macromolecules from blood to tissue, here denoted large pores. We discussed the general behavior of such a heteroporous system. A major consequence of two-pore heteroporosity is that large-solute transport must mainly occur due to convection through large pores at low filtration rates, that is, at normal or even zero lymph flows. Indeed, convection must be the predominating transport mode for most solutes across large pores when the net filtration rate is zero. Under these (transient) conditions, the convective leak of macromolecules across large pores will be counterbalanced by absorption of essentially protein-free fluid through protein-restrictive pores. In a heteroporous membrane, proteins can thus be transported by solvent drag across vascular walls in the absence of a net convection. Normally the steady-state transcapillary fluid flow (lymph flow) is about equally partitioned among small and large pores, which makes lymph essentially a "half and half" mixture of protein-free ultrafiltrate and plasma. With increasing fluid flows, however, the plasma filtrate will be progressively diluted, eventually reaching a protein concentration largely in proportion to the fractional hydraulic conductance accounted for by the large pores (alpha L). Under these high lymph flow conditions, not only the large-pore transport but also the small-pore transport (of smaller macromolecules) will become convective. At low lymph flows, however, the small-pore transport of smaller macromolecules is usually mostly diffusive. An important implication of capillary heteroporosity is that single-pore formalism is inadequate for correctly evaluating the capillary sieving characteristics. With the use of homoporous transport formalism, the "lumped" macromolecular PS and sigma will therefore vary as a function of transcapillary fluid flow (Jv). However, it is approximately correct to use single-pore formalism for conditions when Jv is very high during steady state. Thus, if minimal sieving coefficients can be measured for macromolecules, then these values will accurately reflect (1 - sigma).(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Leilei Bao ◽  
Jongho Park ◽  
Gwenaël Bonfante ◽  
Beomjoon Kim

AbstractIn the past two decades, microneedles (MNs), as a painless and simple drug delivery system, have received increasing attention for various biomedical applications such as transdermal drug delivery, interstitial fluid (ISF) extraction, and biosensing. Among the various types of MNs, porous MNs have been recently researched owing to their distinctive and unique characteristics, where porous structures inside MNs with continuous nano- or micro-sized pores can transport drugs or biofluids by capillary action. In addition, a wide range of materials, including non-polymers and polymers, were researched and used to form the porous structures of porous MNs. Adjustable porosity by different fabrication methods enables the achievement of sufficient mechanical strength by optimising fluid flows inside MNs. Moreover, biocompatible porous MNs integrated with biosensors can offer portable detection and rapid measurement of biomarkers in a minimally invasive manner. This review focuses on several aspects of current porous MN technology, including material selection, fabrication processes, biomedical applications, primarily covering transdermal drug delivery, ISF extraction, and biosensing, along with future prospects as well as challenges. Graphical abstract


2001 ◽  
Vol 21 (3) ◽  
pp. 222-230 ◽  
Author(s):  
Rolf K. Reed ◽  
Ansgar Berg ◽  
Eli-Anne B. Gjerde ◽  
Kristofer Rubin

1968 ◽  
Vol 59 (2_Suppl) ◽  
pp. S35-S51 ◽  
Author(s):  
B. L. Lobel ◽  
E. Levy

ABSTRACT Activities of various hydrolases and dehydrogenases were studied during the formation, development and involution of cyclic corpora lutea and in the corpora lutea of early pregnancy. At 24 hours postovulation the luteal cells, whether of granulosal or thecal origin, contained demonstrable levels of Δ5-3β-hydroxysteroid dehydrogenase and the NADP and NADPH2 diaphorases. During the period of proliferation and cellular growth, enzymic activities in the luteal cells were moderate at first, and then increased. In the mature corpus luteum, activities of the dehydrogenases occurred in all luteal cells but were most intense in the large polymorphic luteal cells. Activities of hydrolytic enzymes, low in the immediate postovulatory period, increased with the development of the vascular system. Enzymic characteristics of corpora lutea of gestation were similar to those of cyclic corpora, except for phosphorylase activity which was observed in luteal cells in gestational corpora, but confined to the vascular walls in cyclic corpora. No increase in activities of 17β- and 20β-hydroxysteroid dehydrogenases (above those seen in pre-ovulatory follicles) were observed after incubation of sections of either mature cyclic or gestational corpora. Involution of cyclic corpora lutea began with degenerative changes in the blood vessels: pyknosis of the endothelial cell nuclei and a sudden decline in activities of hydrolytic enzymes in the vascular walls. Subsequently, the luteal cells showed a sharp decrease in activities of the dehydrogenases as well as other signs of regressive change. The cytochemical findings are discussed in relation to biochemical observations on steroid synthesis by the bovine corpus luteum.


Sign in / Sign up

Export Citation Format

Share Document