Clean Coal Suffers More Blows, In the U.S. and Netherlands

2017 ◽  
Vol 30 (7) ◽  
pp. 75-76
Keyword(s):  
Author(s):  
P. G. LaHaye ◽  
M. R. Bary

A long term program was initiated in 1987 to develop an electric utility indirect coal-fired gas turbine combined cycle. This initial program was supported primarily by U.S. electric utility organizations and had as a purpose the experimental assessment of a ceramic heat exchanger concept applied as a high pressure gas turbine air heater developed by Hague International. The purpose of the initial phase of the development program was to determine if the ceramic materials, then available for use in the air heater, would withstand the high temperature 2200 F (1204 °C) corrosive environment produced by the combustion of coal. Also, in this initial phase, the program was intended to evaluate means of preventing the fouling of the air heater by fly ash. This experimental work was successful. A second phase of the program to build a 7-MW thermal input prototype was initiated in 1990 under the auspices of a cooperative agreement with the U.S. Department of Energy Morgantown Energy Technology Center (DOE-METC). This work was funded by a consortium of electric utilities, utility organizations, industrial organizations, state agencies, international entities, and the U.S. Department of Energy-METC. New members joined the existing Phase I Consortium to participate in funding the second phase. This second prototype phase is nearing completion and test results are to be available beginning mid-1994. A third, or demonstration phase, of the indirect-fired gas turbine program was selected under the U.S. Clean Coal Technology Program Round V. in May, 1993. This demonstration phase is currently in the planning and preliminary engineering stage. The objective of this proposed demonstration phase is to repower an existing coal-fired power plant in the Pennsylvania Electric Company system at Warren, Pennsylvania (Figure 1). This paper describes the demonstration plant, and the anticipated role of the EFCC cycle in the power generation industry, as well as the performance and economic merits of the Warren repowering concept.


2014 ◽  
Vol 136 (10) ◽  
pp. 32-37
Author(s):  
Bridget Mintz Testa

This article presents an overview of clean coal technologies that promise to produce electricity with fewer emissions. The 600 MW John W. Turk Jr. power plant built by American Electric Power near Fulton is the first “ultra-supercritical” electric-generating clean coal unit in the U.S. Turk’s efficiency is 39 percent to 40 percent, versus about 35 percent for conventional plants. Turk burns roughly 11 percent less coal than a subcritical plant would need to produce the same amount of power. Less coal means fewer emissions, and what’s left – aside from carbon dioxide – is further reduced by the state-of-the-art emission control technologies. Another clean coal technology that has seen wider adoption is the circulating fluidized bed combustion (CFBC) technology. One of CFBS’ greatest advantages is that since the furnaces burn at low temperatures, it can use very low-quality fuel, such as waste piles left over from mining and even chicken litter.


Author(s):  
R. D. Heidenreich

This program has been organized by the EMSA to commensurate the 50th anniversary of the experimental verification of the wave nature of the electron. Davisson and Germer in the U.S. and Thomson and Reid in Britian accomplished this at about the same time. Their findings were published in Nature in 1927 by mutual agreement since their independent efforts had led to the same conclusion at about the same time. In 1937 Davisson and Thomson shared the Nobel Prize in physics for demonstrating the wave nature of the electron deduced in 1924 by Louis de Broglie.The Davisson experiments (1921-1927) were concerned with the angular distribution of secondary electron emission from nickel surfaces produced by 150 volt primary electrons. The motivation was the effect of secondary emission on the characteristics of vacuum tubes but significant deviations from the results expected for a corpuscular electron led to a diffraction interpretation suggested by Elasser in 1925.


Author(s):  
Eugene J. Amaral

Examination of sand grain surfaces from early Paleozoic sandstones by electron microscopy reveals a variety of secondary effects caused by rock-forming processes after final deposition of the sand. Detailed studies were conducted on both coarse (≥0.71mm) and fine (=0.25mm) fractions of St. Peter Sandstone, a widespread sand deposit underlying much of the U.S. Central Interior and used in the glass industry because of its remarkably high silica purity.The very friable sandstone was disaggregated and sieved to obtain the two size fractions, and then cleaned by boiling in HCl to remove any iron impurities and rinsed in distilled water. The sand grains were then partially embedded by sprinkling them onto a glass slide coated with a thin tacky layer of latex. Direct platinum shadowed carbon replicas were made of the exposed sand grain surfaces, and were separated by dissolution of the silica in HF acid.


Author(s):  
A. Toledo ◽  
G. Stoelk ◽  
M. Yussman ◽  
R.P. Apkarian

Today it is estimated that one of every three women in the U.S. will have problems achieving pregnancy. 20-30% of these women will have some form of oviductal problems as the etiology of their infertility. Chronically damaged oviducts present problems with loss of both ciliary and microvillar epithelial cell surfaces. Estradiol is known to influence cyclic patterns in secretory cell microvilli and tubal ciliogenesis, The purpose of this study was to assess whether estrogen therapy could stimulate ciliogenesis in chronically damaged human fallopian tubes.Tissues from large hydrosalpinges were obtained from six women undergoing tuboplastic repair while in the early proliferative phase of fheir menstrual cycle. In each case the damaged tissue was rinsed in heparinized Ringers-lactate and quartered.


Sign in / Sign up

Export Citation Format

Share Document