An indicator displacement system for fluorescent detection of phosphate oxyanions under physiological conditions

2004 ◽  
Vol 45 (47) ◽  
pp. 8721-8724 ◽  
Author(s):  
Roger G. Hanshaw ◽  
Sarah M. Hilkert ◽  
Hua Jiang ◽  
Bradley D. Smith
Author(s):  
Å. Thureson-Klein

Giant mitochondria of various shapes and with different internal structures and matrix density have been observed in a great number of tissues including nerves. In most instances, the presence of giant mitochondria has been associated with a known disease or with abnormal physiological conditions such as anoxia or exposure to cytotoxic compounds. In these cases degenerative changes occurred in other cell organelles and, therefore the giant mitochondria also were believed to be induced structural abnormalities.Schwann cells ensheating unmyelinated axons of bovine splenic nerve regularly contain giant mitochondria in addition to the conventional smaller type (Fig. 1). These nerves come from healthy inspected animals presumed not to have been exposed to noxious agents. As there are no drastic changes in the small mitochondria and because other cell components also appear reasonably well preserved, it is believed that the giant mitochondria are normally present jin vivo and have not formed as a post-mortem artifact.


Author(s):  
N. Seki ◽  
Y. Toyama ◽  
T. Nagano

It is believed that i ntramembra.nous sterols play an essential role in membrane stability and permeability. To investigate the distribution changes of sterols in sperm membrane during epididymal maturation and capacitation, filipin has been used as a cytochemical probe for the detection for membrane sterols. Using this technique in combination with freeze fracturing, we examined the boar spermatozoa under various physiological conditions.The spermatozoa were collected from: 1) caput, corpus and cauda epididymides, 2) sperm rich fraction of ejaculates, and 3)the uterus 2hr after natural coition. They were fixed with 2.5% glutaraldehyde in 0.05M cacodylate buffer (pH 7.4), and treated with the filipin solution (final concentration : 0.02.0.05%) for 24hr at 4°C with constant agitation. After the filipin treatment, replicas were made by conventional freeze-fracture technique. The density of filipin-sterol complexes (FSCs) was determined in the E face of the plasma membrane of head regions.


2001 ◽  
Vol 40 (01) ◽  
pp. 31-37 ◽  
Author(s):  
U. Wellner ◽  
E. Voth ◽  
H. Schicha ◽  
K. Weber

Summary Aim: The influence of physiological and pharmacological amounts of iodine on the uptake of radioiodine in the thyroid was examined in a 4-compartment model. This model allows equations to be derived describing the distribution of tracer iodine as a function of time. The aim of the study was to compare the predictions of the model with experimental data. Methods: Five euthyroid persons received stable iodine (200 μg, 10 mg). 1-123-uptake into the thyroid was measured with the Nal (Tl)-detector of a body counter under physiological conditions and after application of each dose of additional iodine. Actual measurements and predicted values were compared, taking into account the individual iodine supply as estimated from the thyroid uptake under physiological conditions and data from the literature. Results: Thyroid iodine uptake decreased from 80% under physiological conditions to 50% in individuals with very low iodine supply (15 μg/d) (n = 2). The uptake calculated from the model was 36%. Iodine uptake into the thyroid did not decrease in individuals with typical iodine supply, i.e. for Cologne 65-85 μg/d (n = 3). After application of 10 mg of stable iodine, uptake into the thyroid decreased in all individuals to about 5%, in accordance with the model calculations. Conclusion: Comparison of theoretical predictions with the measured values demonstrated that the model tested is well suited for describing the time course of iodine distribution and uptake within the body. It can now be used to study aspects of iodine metabolism relevant to the pharmacological administration of iodine which cannot be investigated experimentally in humans for ethical and technical reasons.


1993 ◽  
Vol 70 (05) ◽  
pp. 867-872 ◽  
Author(s):  
Dingeman C Rijken ◽  
Gerard A W de Munk ◽  
Annie F H Jie

SummaryIn order to define the possible effects of heparin on the fibrinolytic system under physiological conditions, we studied the interactions of this drug with plasminogen and its activators at various ionic strengths. As reported in recent literature, heparin stimulated the activation of Lys-plasminogen by high molecular weight (HMW) and low molecular weight (LMW) two-chain urokinase-type plasminogen activator (u-PA) and two-chain tissue-type plasminogen activator (t-PA) 10- to 17-fold. Our results showed, however, that this stimulation only occurred at low ionic strength and was negligible at a physiological salt concentration. Direct binding studies were performed using heparin-agarose column chromatography. The interaction between heparin and Lys-plasminogen appeared to be salt sensitive, which explains at least in part why heparin did not stimulate plasminogen activation at 0.15 M NaCl. The binding of u-PA and t-PA to heparinagarose was less salt sensitive. Results were consistent with heparin binding sites on both LMW u-PA and the amino-terminal part of HMW u-PA. Single-chain t-PA bound more avidly than two-chain t-PA. The interactions between heparin and plasminogen activators can occur under physiological conditions and may modulate the fibrinolytic system.


2019 ◽  
Author(s):  
Hamilton Lee ◽  
Jenica Lumata ◽  
Michael A. Luzuriaga ◽  
Candace Benjamin ◽  
Olivia Brohlin ◽  
...  

<div><div><div><p>Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical in vivo. We further over came the weak contrast by conjugating this complex on the surface of a self-assembled biomacromolecule derived from the tobacco mosaic virus.</p></div></div></div>


Author(s):  
Tamilarasi G P ◽  
Sabarees G

Oxidation is an essential reaction in the human body, which determines the expression of proteins in the body. This results in the altered expression like rapid growth resulting in cancers and other disorders. Many synthetic drugs are available in the market that is effective in limiting the free radical generation and the reaction of radicals with cells. Unfortunately, all those synthetic drugs were found to cause side effects and adverse effects in the body. But given the accuracy of the predictability of the results and administration, this research focuses on testing the anti-oxidant efficiency in rat models testing the biochemical parameters. Investigations have also been done on the anti-oxidant activity of Tectona, but every research was concentrated to prove the anti-oxidant activity only. extract had been tested for anti-oxidant activity by estimating various tissue parameters and it showed better activity. As predicted, there is a significant difference in the and results which can be explained are due to the physiological conditions that exist inside the body.


2018 ◽  
Vol 24 (20) ◽  
pp. 2283-2302 ◽  
Author(s):  
Vivian B. Neis ◽  
Priscila B. Rosa ◽  
Morgana Moretti ◽  
Ana Lucia S. Rodrigues

Heme oxygenase (HO) family catalyzes the conversion of heme into free iron, carbon monoxide and biliverdin. It possesses two well-characterized isoforms: HO-1 and HO-2. Under brain physiological conditions, the expression of HO-2 is constitutive, abundant and ubiquitous, whereas HO-1 mRNA and protein are restricted to small populations of neurons and neuroglia. HO-1 is an inducible enzyme that has been shown to participate as an essential defensive mechanism for neurons exposed to oxidant challenges, being related to antioxidant defenses in certain neuropathological conditions. Considering that neurodegenerative diseases (Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and Multiple Sclerosis (MS)) and neuropsychiatric disorders (depression, anxiety, Bipolar Disorder (BD) and schizophrenia) are associated with increased inflammatory markers, impaired redox homeostasis and oxidative stress, conditions that may be associated with alterations in HO-levels/activity, the purpose of this review is to present evidence on the possible role of HO-1 in these Central Nervous System (CNS) diseases. In addition, the possible therapeutic potential of targeting brain HO-1 is explored in this review.


Sign in / Sign up

Export Citation Format

Share Document