scholarly journals Assessing potential habitat distribution range of the endangered tree species Pterocarpus marsupium Roxb. under the climate change scenario in India

2021 ◽  
pp. 100124
Author(s):  
Brojo Gopal Ghosh ◽  
Sanjoy Garai ◽  
Sk Mujibar Rahaman ◽  
Masjuda Khatun ◽  
Naseer Mohammad ◽  
...  
2014 ◽  
Vol 327 ◽  
pp. 48-54 ◽  
Author(s):  
Jinghua Yu ◽  
Chunjing Wang ◽  
Jizhong Wan ◽  
Shijie Han ◽  
Qinggui Wang ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 628 ◽  
Author(s):  
Pablo Antúnez ◽  
Mario Suárez-Mota ◽  
César Valenzuela-Encinas ◽  
Faustino Ruiz-Aquino

Species distribution models have become some of the most important tools for assessment of impact of climatic change, impact of human activity and for the detection of failure in silvicultural or conservation management plans. In this study, we modeled the potential distribution of 13 tree species of temperate forests distributed in the Mexican state Durango in the Sierra Madre Occidental, for three periods of time. Models were constructed for each period of time using 19 climate variables from the MaxEnt (Maximum Entropy algorithm) modelling algorithm. Those constructed for the future used a severe climate change scenario. When comparing the potential areas of the periods, some species such as Pinus durangensis (Martínez), Pinus teocote (Schiede ex Schltdl. & Cham.) and Quercus crassifolia (Bonpl.) showed no drastic changes. Rather, the models projected a slight reduction, displacement or fragmentation in the potential area of Pinus arizonica (Engelm.), P. cembroides (Zucc), P. engelmanni (Carr), P. leiophylla (Schl), Quercus arizonica (Sarg), Q. magnolifolia (Née) and Q. sideroxila (Humb. & Bonpl.) in the future period. Thus, establishing conservation and reforestation strategies in the medium and long term could guarantee a wide distribution of these species in the future.


2020 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Faezah Pardi

This study was conducted at Pulau Jerejak, Penang to determine the floristic variation of its tree communities. A 0.5-hectare study plot was established and divided into 11 subplots. A total of 587 trees with diameter at breast height (DBH) of 5 cm and above were measured, identified and recorded. The tree communities comprised of 84 species, 63 genera and 32 families. The Myrtaceae was the most speciose family with 10 recorded species while Syzgium glaucum (Myrtaceae) was the most frequent species. The Myrtaceae recorded the highest density of 306 individuals while Syzgium glaucum (Myrtaceae) had the highest species density of 182 individuals. Total tree basal area (BA) was 21.47 m2/ha and family with the highest BA was Myrtaceae with 5.81 m2/ha while at species level, Syzgium glaucum (Myrtaceae) was the species with the highest total BA in the plot with value of 4.95 m2/ha. The Shannon˗Weiner Diversity Index of tree communities showed a value of 3.60 (H'max = 4.43) and Evenness Index of 0.81 which indicates high uniformity of tree species. The Margalef Richness Index (R') revealed that the tree species richness was 13.02. Myrtaceae had the highest Importance Value of 20.4%. The Canonical Correspondence Analysis (CCA) showed that Diospyros buxifolia (Ebenaceae) and Pouteria malaccensis (Sapotaceae) were strongly correlated to low pH. Dysoxylum cauliflorum (Meliaceae) and Eriobotrya bengalensis (Rosaceae) were correlated to phosphorus (P) and calcium ion (Ca2+), respectively. Therefore, the trees species composition at Pulau Jerejak showed that the biodiversity is high and conservation action should be implemented to protect endangered tree species. Keywords: Floristic variation; Tree communities; Trees composition; Pulau Jerejak; Species diversity


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 385
Author(s):  
Beatrice Nöldeke ◽  
Etti Winter ◽  
Yves Laumonier ◽  
Trifosa Simamora

In recent years, agroforestry has gained increasing attention as an option to simultaneously alleviate poverty, provide ecological benefits, and mitigate climate change. The present study simulates small-scale farmers’ agroforestry adoption decisions to investigate the consequences for livelihoods and the environment over time. To explore the interdependencies between agroforestry adoption, livelihoods, and the environment, an agent-based model adjusted to a case study area in rural Indonesia was implemented. Thereby, the model compares different scenarios, including a climate change scenario. The agroforestry system under investigation consists of an illipe (Shorea stenoptera) rubber (Hevea brasiliensis) mix, which are both locally valued tree species. The simulations reveal that farmers who adopt agroforestry diversify their livelihood portfolio while increasing income. Additionally, the model predicts environmental benefits: enhanced biodiversity and higher carbon sequestration in the landscape. The benefits of agroforestry for livelihoods and nature gain particular importance in the climate change scenario. The results therefore provide policy-makers and practitioners with insights into the dynamic economic and environmental advantages of promoting agroforestry.


Sign in / Sign up

Export Citation Format

Share Document