Effect of retinoids on LPS-induced COX-2 expression and COX-2 associated PGE2 release from mouse peritoneal macrophages and TNF-α release from rat peripheral blood mononuclear cells

2004 ◽  
Vol 150 (2) ◽  
pp. 191-201 ◽  
Author(s):  
Bae-Hwan Kim ◽  
Kyung-Sun Kang ◽  
Yong-Soon Lee
2009 ◽  
Vol 102 (2) ◽  
pp. 201-206 ◽  
Author(s):  
María Monagas ◽  
Nasiruddin Khan ◽  
Cristina Andrés-Lacueva ◽  
Mireia Urpí-Sardá ◽  
Mónica Vázquez-Agell ◽  
...  

Oligomers and polymers of flavan-3-ols (proanthocyanidins) are very abundant in the Mediterranean diet, but are poorly absorbed. However, when these polyphenols reach the colon, they are metabolised by the intestinal microbiota into various phenolic acids, including phenylpropionic, phenylacetic and benzoic acid derivatives. Since the biological properties of these metabolites are not completely known, in the present study, we investigated the effect of the following microbial phenolic metabolites: 3,4-dihydroxyphenylpropionic acid (3,4-DHPPA), 3-hydroxyphenylpropionic acid, 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid and 4-hydroxyhippuric acid (4-HHA), on modulation of the production of the main pro-inflammatory cytokines (TNF-α, IL-1β and IL-6). The production of these cytokines by lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMC) pre-treated with the phenolic metabolites was studied in six healthy volunteers. With the exception of 4-HHA for TNF-α secretion, only the dihydroxylated compounds, 3,4-DHPPA and 3,4-DHPAA, significantly inhibited the secretion of these pro-inflammatory cytokines in LPS-stimulated PBMC. Mean inhibition of the secretion of TNF-α by 3,4-DHPPA and 3,4-DHPAA was 84·9 and 86·4 %, respectively. The concentrations of IL-6 in the culture supernatant were reduced by 88·8 and 92·3 % with 3,4-DHPPA and 3,4-DHPAA pre-treatment, respectively. Finally, inhibition was slightly higher for IL-1β, 93·1 % by 3,4-DHPPA and 97·9 % by 3,4-DHPAA. These results indicate that dihydroxylated phenolic acids derived from microbial metabolism present marked anti-inflammatory properties, providing additional information about the health benefits of dietary polyphenols and their potential value as therapeutic agents.


2018 ◽  
Author(s):  
Ana Vitlic ◽  
Sohaib Sadiq ◽  
Hafiz I. Ahmed ◽  
Elisa C. Ale ◽  
Ana G. Binetti ◽  
...  

ABSTRACTLactobacillus fermentumLf 2 produces large amounts of exopolysaccharides under optimized conditions (∼2 g/L, EPS) which have been shown to possess immunomodulatory activity. In this study, the crude EPS was fractionated to give a high molecular weight (HMw) homoglycan and a mixture of medium molecular weight heteroglycans. The HMw EPS was isolated and identified as a β-glucan.Peripheral blood mononuclear cells (PBMC) were pre-treated with purified polysaccharide to determine if the HMw β-glucan is responsible for the immunomodulatory activity. Cells were also stimulated with either lipopolysaccharide (LPS) or phytohemagglutinin (PHA) and their effects, both with and without β-glucan pre-treatment, compared.Exposure of the cells to β-glucan increased their metabolic activity and whilst a small but statistically significant drop in CD14 expression was observed at Day 1, the levels were significantly elevated at Day 2. High levels of CD14 expression were observed in cells initially exposed to the β-glucan and subsequently stimulated with either LPS or PHA. In contrast, reduced levels of TLR-2 expression were observed for cells initially exposed to the β-glucan and subsequently stimulated with LPS.TNF-α levels were elevated in β-glucan treated cells (Day1) with the levels dropping back once the β-glucan had been removed (Day 2). The stimulants LPS and PHA both induced significant rises in TNF-α levels, however, this induction was completely (LPS) or partially blocked (PHA) in β-glucan pre-treated cells.The results indicate a role for the bacterial β-glucan in modulating the immune response following exposure to agonists such as bacterial LPS.


Sign in / Sign up

Export Citation Format

Share Document