A new telemetry system for measuring the rotating ring's temperature in a tribological test rig for mechanical face seals

2017 ◽  
Vol 106 ◽  
pp. 71-77 ◽  
Author(s):  
Maria Cristina Valigi ◽  
Claudio Braccesi ◽  
Silvia Logozzo ◽  
Lorenzo Conti ◽  
Massimiliano Borasso
Tribologia ◽  
2018 ◽  
Vol 271 (1) ◽  
pp. 51-55
Author(s):  
Piotr KOWALEWSKI ◽  
Anna BROŃCZYK ◽  
Wojciech WIELEBA

The paper presents a description of the mechanical construction, measuring and control systems and the possibilities of a new type tribological testing device. The design was developed and built at the Department of Fundamentals of Machine Design and Tribology of Wroclaw University of Science and Technology. Described tester allows the investigate a friction and wear of components such as fibrous tapes, ropes, plaitings or fibers themselves in contact with solid materials. The paper describes in detail the construction of drive and the load pneumatic system. The innovative system of the device such measurement equipped with piezoelectric sensors and an experimental fixing unit of tested components also have been described. Work includes diagrams of used control and measurement systems and the central lubrication system. As a test the polyethylene cable in contact with brass rods has been examined. The results of this studies were been also presented in the paper.


1995 ◽  
Vol 117 (1) ◽  
pp. 130-135 ◽  
Author(s):  
An Sung Lee ◽  
Itzhak Green

The dynamic behavior of mechanical face seals has been an active area of research over the past three decades. Analytical and experimental investigations have exclusively been devoted to the flexibly mounted stator (FMS) seal. Recent theoretical work on the dynamics of the noncontacting flexibly mounted rotor (FMR) seal has proven that it excels in every aspect of dynamic behavior compared to the FMS seal. The advantages of the FMR seal, however, have to be experimentally verified. This work introduces a physical model (i.e., test rig) for an experimental investigation of the dynamic behavior of a noncontacting FMR seal. Features of the test rig, a new method of modeling and measuring the stiffness and damping of elastomeric O-ring secondary seals, and data analysis procedures will be introduced. Finally, experimental results will be compared with theory.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
A. P. Harsha ◽  
P. K. Limaye ◽  
Rajnesh Tyagi ◽  
Ankit Gupta

A mechanized galling tester has been developed to evaluate the galling resistance of material pairs at room temperature (RT) as well as at elevated temperature condition. The test rig has a facility for online measurement of frictional torque during the test which is useful in assessing the incipient scoring. Both the test rig and the test method conform to the recent ASTM G196-08 standard. Galling resistance of two different grades of stainless steel SS 304 and 304 L has been evaluated in self-mated condition at RT and elevated temperature (300 °C). The parameter called galling50 has been reported for the materials tested. The galled surface indicated the severe plastic deformation in the direction of sliding and it is dominated by the typical adhesive wear mechanism. The recent ASTM G196-08 test method for measurement of galling resistance of material pairs appears to be superior to an older ASTM G98 because galling behavior was prevailed by the stochastic wear phenomenon.


2021 ◽  
Author(s):  
Diganta Narzary ◽  
David Stasenko ◽  
Nikhil Rao

Abstract A full-size, full-speed, axial flow steam turbine test rig capable of measuring turbine thrust, and static pressures in the rotor-stator disk cavity was built and commissioned. The test rig was operated in a single-stage configuration for the test results first reported in Stasenko et al. [1], and now in this paper. The stage has stationary axial face seals radially inward of the airfoils, near the rotor disk rim. The face seals divide the rotor-stator cavity into inner and outer circumferential cavities, both of which were instrumented with static pressure probes on the stator radial wall. Axial thrust was measured with load cells in every thrust bearing pad. The test rig was operated over a range of three nominal stage pressure ratios (designated as LPR, MPR, and HPR), five nominal stage velocity ratios (0.25–0.6), and five admission fractions (0.38–0.88). This latest group of tests was conducted without rotor disk balance holes, which were mechanically plugged, and will be compared to the original block of tests with disk balance holes opened. In the upstream disk cavity, the two disk balance hole configurations shared many similar pressure characteristics: nearly uniform pressures in the inner cavity, circumferential pressure distributions in the outer cavity that corresponded with the direction of axial thrust, and radial pressure distributions in the outer cavity that were a direct function of rotor speed. General trends of thrust coefficients with the disk holes plugged were correlated to stage pressure ratio, stage velocity ratio, admission fraction, and leakage mass flow rate. Those trends were consistent with the first block of tests with open disk balance holes, although there was an offset toward more operating conditions with negative aggregate thrust coefficients. This suggests that the rotating disk induces a low-pressure gradient in the inner (upstream) cavity, and the opened disk balance holes tend to equalize the inner cavity static pressure toward the higher static pressure on the exit side of the disk. Additionally, thrust coefficients tended to become less negative (or more positive) with stage pressure ratio and with velocity ratio, but tended to become more negative with admission fraction. Significant thrust coefficient reductions were realized with the open disk balance hole configuration, and were determined to be consistently speed-dependent.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Julius Wilhelm ◽  
Corina Schwitzke ◽  
Hans-Jörg Bauer ◽  
Tue Nguyen

In the present paper, an approach for scaling the aerodynamics of advanced seals is presented. Modern advanced seals, such as a self-adaptive gas lubricated face seal, comprise elements that are commonly used in turbomachinery sealing. These are labyrinth seals and mechanical face seals. Parameters influencing the aerodynamical and mechanical behavior of each seals type are known. However, a combined methodology to scale the aerodynamics of the self-adaptive seal which consists of more than one element has not yet been published. The proposed methodology is applied to a model self-adaptive seal, and numerical simulations are performed to prove the validity of the approach. The new methodology ensures the transferability of experimental results at lab scale to engine conditions. Since the new approach allows scaling of self-adaptive seal tests, a new unique test rig will be designed accordingly.


Author(s):  
Julius Wilhelm ◽  
Corina Schwitzke ◽  
Hans-Jörg Bauer ◽  
Tue Nguyen

In the present paper an approach for scaling the aerodynamics of advanced seals is presented. Modern advanced seals, such as a self-adaptive gas lubricated face seal comprise elements that are commonly used in turbomachinery sealing. These are labyrinth seals and mechanical face seals. Parameters influencing the aerodynamical and mechanical behavior of each seals type are known. However, a combined methodology to scale the aerodynamics of the self-adaptive seal which consists of more than one element has not yet been published. The proposed methodology is applied to a model self-adaptive seal and numerical simulations are performed to prove the validity of the approach. The new methodology ensures the transferability of experimental results at lab scale to engine conditions. Since the new approach allows scaling of self-adaptive seal tests, a new unique test rig will be designed accordingly.


Author(s):  
David Stasenko ◽  
Nikhil Rao ◽  
Diganta Narzary

Abstract Large mechanical drive steam turbines used in the oil & gas industry are operating at increasingly higher inlet pressure, generating higher shaft power. Those higher power requirements result in larger disk diameters and surface areas. High thrust forces can be a result, due to both the high inlet pressure and large disk surface area. Industry standards require oversizing of thrust bearings to handle uncertainty in thrust predictions. These factors make improvement in thrust prediction accuracy and mitigation strategies important. A full-size, axial flow steam turbine test rig capable of measuring turbine thrust, and static pressure in the upstream rotor-stator cavity was built and commissioned. The test rig was operated in single stage configuration for the tests reported here. The rotor disk had balance holes and stationary axial face seals near the disk rim. The face seals divide the upstream rotor-stator cavity into inner and outer circumferential cavities. The rotor-stator cavity upstream of the rotor disk was instrumented, on the stationary wall, to measure the radial and circumferential pressure distribution. Bearing thrust was measured with load cells. Tests varied nominal pressure ratios (1.2, 1.5, 2.0 and 3.0), velocity ratios (0.35–0.6), admission fractions (0.25–1.0) and shaft leakage flow rates. Circumferential pressure asymmetry, due to partial admission operation, was confined to the outer cavity. The inner cavity pressure coefficient was circumferentially uniform at all operating points. The average pressure coefficient in the upstream rotor-stator cavity generally decreased as the shaft leakage flow rate coefficient increased. Increased leakage flow rate coefficient also increased the magnitude of the upstream directed or negative thrust.


Author(s):  
Benjamin Heinschke ◽  
Wieland Uffrecht ◽  
André Günther ◽  
Stefan Odenbach ◽  
Volker Caspary

Heat transfer coefficients are very important for the design of the various flow paths found in turbomachinery. An accurate measurement of heat transfer is difficult for circumstances of gaseous flow in combination with good thermal conductivity of the boundaries along the flow path. The majority of the measurement methods applied frequently have at least one of the following problems: (1) the measurement system as for instance a heat flux sensor is a thermal barrier in the object of interest, and (2) the sensor introduces for measurement reasons a lot of heat into the object of interest. In both cases the main error results from the modification of the system, which is critical for the investigation of any kind of flow influenced by buoyancy. Furthermore, insufficient fluid reference temperature and/or heat flux with changing sign corrupts any attempt to calculate reliable heat transfer coefficients. The measurement of heat transfer coefficients becomes even more complicated if the flow path of interest rotates at some thousand rpm as for instance in gas turbines or any other fast rotating machine with fluid flow. This contribution presents a new test rig and an experimental investigation of a setup for the direct telemetric measurement of local heat transfer coefficients in gaseous flow with metallic boundaries. The test rig has a complex instrumentation and the measurements are transferred from the rotating to the stationary frame via newly in house developed telemetry system. The measurements presented are based on a recent measurement/sensor concept tested for the first time in the rotating frame. The measurement setup features miniaturized sensor dimensions and low energy consumption. Therefore, the sensor concept is very well suited for use with telemetry system as necessary for many turbomachinery research applications. Furthermore, measurements of the radial distribution of the heat transfer coefficient of a rotating free disc are presented. Additionally a comparison with correlations found in literature as well as a discussion of the results is included.


Sign in / Sign up

Export Citation Format

Share Document