scholarly journals Experimental and numerical study of self-sustaining fluid films generated in highly compressible porous layers imbibed with liquids

2020 ◽  
Vol 151 ◽  
pp. 106435
Author(s):  
Serguei Kunik ◽  
Aurelian Fatu ◽  
Jean Bouyer ◽  
Pascal Doumalin
1994 ◽  
Vol 116 (2) ◽  
pp. 465-472 ◽  
Author(s):  
A. Hadim

A numerical study is performed to analyze steady laminar forced convection in a channel filled with a fluid-saturated porous medium and containing discrete heat sources on the bottom wall. Hydrodynamic and heat transfer results are reported for two configurations: (1) a fully porous channel, and (2) a partially porous channel, which contains porous layers above the heat sources and is nonporous elsewhere. The flow in the porous medium is modeled using the Brinkman-Forchheimer extended Darcy model. Heat transfer rates and pressure drop are evaluated for wide ranges of Darcy and Reynolds numbers. Detailed results of the evolution of the hydrodynamic and thermal boundary layers are also provided. The results indicate that as the Darcy number decreases, a significant increase in heat transfer is obtained, especially at the leading edge of each heat source. For fixed Reynolds number, the length-averaged Nusselt number reaches an asymptotic value in the Darcian regime. In the partially porous channel, it is found that when the width of the heat source and the spacing between the porous layers are of the same magnitude as the channel height, the heat transfer enhancement is almost the same as in the fully porous channel while the pressure drop is significantly lower. These results suggest that the partially porous channel configuration is a potentially attractive heat transfer augmentation technique for electronic equipment cooling, an end that motivated this study.


Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


2013 ◽  
Author(s):  
Pancheewa Benjamasutin ◽  
◽  
Ponthong Rijana ◽  
Phongchayont Srisuwan ◽  
Aussadavut Dumrongsiri

2013 ◽  
Author(s):  
Artchapong Hassametto ◽  
Preerawadee Chaiboontun ◽  
Chattraporn Prajuabwan ◽  
Laphatrada Khammuang ◽  
Aussadavut Dumrongsiri

Sign in / Sign up

Export Citation Format

Share Document