scholarly journals Analysis of the effect of the fuel dose on selected parameters of the diesel engine start-up process

2019 ◽  
Vol 40 ◽  
pp. 647-654
Author(s):  
Jacek Caban ◽  
Paweł Droździel ◽  
Piotr Ignaciuk ◽  
Paweł Kordos
Keyword(s):  
Start Up ◽  
2004 ◽  
Author(s):  
Fuyuan Yang ◽  
Jingyong Zhang ◽  
Qiang Han ◽  
Minggao Ouyang

2012 ◽  
Vol 229-231 ◽  
pp. 1967-1970
Author(s):  
Zhen Min Cui ◽  
Ru Wang

Diesel engine; Super-capacitor; Starter system; Modeling; Simulation Abstract. In order to improve the start-up performance of the diesel engine and the working conditions of batteries, make efficient use of the high instantaneous discharge power characteristics of the super-capacitor as a diesel engine start-up auxiliary power. Taking the YC6J180 types of Yuchai diesel engine as illustration, diesel engine starting process was modeled and simulated by Matlab/Simulink software, and compared with the simulation model of diesel engine starting system added the super-capacitor. The simulation results show that the diesel engine starter system added the super-capacitor as the auxiliary power, the starting performance is improved significantly, meanwhile improve the battery state, and extend its service life.


2019 ◽  
Vol 14 (4) ◽  
pp. 51-62 ◽  
Author(s):  
Jacek CABAN ◽  
Paweł DROŹDZIEL ◽  
Piotr IGNACIUK ◽  
Paweł KORDOS

2014 ◽  
Vol 698 ◽  
pp. 144-149 ◽  
Author(s):  
Stanislav V. Makarov ◽  
Michail G. Gurov ◽  
Michail A. Smirnov

This paper deals with the research aimed at the efficiency upgrading techniques of start-up process of the diesel engines of shunt locomotives. The application features are indicated and methods of reliable start of the diesel engines with using of the supercapacitors are developed. The issues of reliability and lifetime of the supercapacitors stacks in start-up systems improvement are considered. The mathematical and simulation modelsare developed, changing of current - and speed-time curve charts are also presented.


2018 ◽  
Vol 7 (4.3) ◽  
pp. 152 ◽  
Author(s):  
Dmytro Aulin ◽  
Artem Zinkivskyi ◽  
Oleksandr Anatskyi ◽  
Dmytro Kovalenko

This article discusses the measures for efficient use of fuel and energy resources in the railway industry. The calculation of the initial moment of starting the diesel engine and the necessary position of its crankshaft is made, on the basis of which it is proposed to modernize the locomotive start-up system with a decompressor. These measures are aimed at reducing the dynamic loads of engine components and reducing their wear and tear, as well as failure preventing. A method for the clean-up of fuel systems and the cylinder-piston diesel engine group of diesel locomotives was developed and tested using a special cleaning liquid that dissolves and removes solidified particles from pipelines and tanks. Measures have been proposed on the use of advanced models to test the modernized locomotives that will reduce the duration of the tests, resource and economic costs. The use of advanced testing model involves choosing the level of accuracy of the test results and, consequently, their duration and cost.  


2015 ◽  
Vol 792 ◽  
pp. 529-535
Author(s):  
Stanislav V. Makarov ◽  
Alexander Vladimirovish Myatez ◽  
Vitali D. Suslyakov

The article presents the research aimed at improving the efficiency of the diesel engines running. The advantages and disadvantages of the existing systems of the starter starting systems of diesel locomotives are considered. Brainstorming ideas on the issue of the calculation and selection of the alternative circuitry power circuit pulse converter starting system of diesel engines are described in the paper. An example of calculating the regulating characteristics of the pulse converter and the efficiency of the proposed circuit design is reported.


Author(s):  
Syed Adnan Qasim ◽  
M. Afzaal Malik

In the normal low-speed engine operation, elastohydrodynamic lubrication (EHL) of piston skirts and lubricant rheology reduce friction and prevent wear. In a few initial start up cycles, a very low engine speed and absence of EHL cause adhesive wear. This study models hydrodynamic and EHL of piston skirts in the initial very low cold engine start up speed by using a high viscosity lubricant. The 2-D Reynolds equation is solved and inverse solution technique is used to calculate the pressures and film thickness profiles in the hydrodynamic and EHL regimes, respectively. The work is extended to investigate the effects of three very low initial engine start up speeds on the transverse eccentricities of piston skirts, film thickness profiles and pressure fields in the hydrodynamic and EHL regimes. Despite using a viscous lubricant, thin EHL film profiles are generated at low start up speeds. This study suggests very low speed optimization in the cold initial engine start up conditions to prevent piston wear under isothermal conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Liupeng He ◽  
Changgao Xia ◽  
Sida Chen ◽  
Jiwei Guo ◽  
Yi Liu

This paper is aimed to investigate the influence of dual-mass flywheel (DMF) kinetic parameters on driveline torsional vibration in engine start-up process, which prescribes the design requirements under start-up condition for DMF matching. On the basis of driveline excitation analysis during engine start-up, the analytical model of DMF driveline torsional vibration system is built and simulated. The vehicle start-up test is conducted and compared with the simulation results. On account of the partial nonstationary characteristic of driveline during start-up, the start-up process is separated into 3 phases for discussing the influence of DMF rotary inertia ratio, hysteresis torque, and nonlinear torsional stiffness on attenuation effect. The test and simulation results show that the DMF undergoes severe oscillation when driveline passes through resonance zone, and the research model is verified to be valid. The DMF design requirements under start-up condition are obtained: the appropriate rotary inertia ratio (the 1st flywheel rotary inertia-to-the 2nd flywheel rotary inertia ratio) is 0.7∼1.1; the interval of DMF small torsion angle should be designed as being with small damping, while large damping is demanded in the interval of large torsion angle; DMF should be equipped with low torsional stiffness when working in start-up process.


Sign in / Sign up

Export Citation Format

Share Document