A tensile-testing technique for micrometer-sized free-standing thin films

2005 ◽  
Vol 484 (1-2) ◽  
pp. 426-432 ◽  
Author(s):  
Yi-Wen Cheng ◽  
David T. Read ◽  
J. David McColskey ◽  
Joyce E. Wright
1995 ◽  
Vol 405 ◽  
Author(s):  
Haibo Huang ◽  
Frans Spaepen

AbstractStrain measurement by laser diffraction was used in tensile testing of free-standing Ag/Cu multilayered thin films with repeat lengths between 3 nm and 3 μm. The mean value, for all the films, of the Young modulus was 83.1± 1.2 GPa, and of the Poisson ratio was 0.377±0.015. No variation with bilayer repeat length, and hence no “supermodulus” effect, was observed.


1997 ◽  
Vol 505 ◽  
Author(s):  
F. Macionczyk ◽  
W. Brückner ◽  
G. Reiss

ABSTRACTFor better understanding the mechanical properties of thin films it is helpful to use the same experimental methods as for bulk material, like tensile tests, thereby being able to directly compare the results. However, tensile tests of free-standing metallic thin films are often difficult to perform for reasons of preparation, handling, and stresses in the films. By leaving the metallic film on an elastic substrate tensile tests were performed in a rather simple and precise manner, using a commercial tensile testing machine. Stress-strain curves were determined by separating the force working on the substrate from that working on the film-substrate compound. Those measurements were done at room temperature for Al, AlCu(0. 5 wt %) and Cuo0.57Ni0.42Mn0.01 thin (200–2000 nm) films prepared by magnetron sputtering on 8 μm and 13 μm thick polyimide (Kapton) foils. The film microstructure was characterized by scanning and transmission electron microscopy and X-ray diffraction. The tensile strength of the fine grained films was found to be up to one order of magnitude higher than for the corresponding coarse grained bulk material. Al and AlCu films showed little, CuNi(Mn) films showed no plastical behavior. Crack formation started between 0.3 % and 2 % strain depending on the material, the thermal history, and the grain size.


Author(s):  
Alexander Konetschny ◽  
Marcel Weinhold ◽  
Christian Heiliger ◽  
Matthias Thomas Elm ◽  
Peter J. Klar

Square-shaped Ce0.8Gd0.2O2 (GDC) membranes are prepared by microstructuring techniques from (111)-oriented, polycrystalline GDC thin films. The strain state of the membranes is investigated by micro-Raman mapping using polarized excitation light....


2006 ◽  
Vol 914 ◽  
Author(s):  
George Andrew Antonelli ◽  
Tran M. Phung ◽  
Clay D. Mortensen ◽  
David Johnson ◽  
Michael D. Goodner ◽  
...  

AbstractThe electrical and mechanical properties of low-k dielectric materials have received a great deal of attention in recent years; however, measurements of thermal properties such as the coefficient of thermal expansion remain minimal. This absence of data is due in part to the limited number of experimental techniques capable of measuring this parameter. Even when data does exist, it has generally not been collected on samples of a thickness relevant to current and future integrated processes. We present a procedure for using x-ray reflectivity to measure the coefficient of thermal expansion of sub-micron dielectric thin films. In particular, we elucidate the thin film mechanics required to extract this parameter for a supported film as opposed to a free-standing film. Results of measurements for a series of plasma-enhanced chemical vapor deposited and spin-on low-k dielectric thin films will be provided and compared.


2016 ◽  
Vol 681 ◽  
pp. 589-594 ◽  
Author(s):  
G. Durak Yüzüak ◽  
E. Yüzüak ◽  
Y. Elerman

1991 ◽  
Vol 239 ◽  
Author(s):  
J. Ruud ◽  
D. Josell ◽  
A. L. Greer ◽  
F. Spaepen

ABSTRACTA new design for a thin film microtensile tester is presented. The strain is measured directly on the free-standing thin film from the displacement of laser spots diffracted from a thin grating applied to its surface by photolithography. The diffraction grating is two-dimensional, allowing strain measurement both along and transverse to the tensile direction. In principle, both Young's modulus and Poisson's ratio of a thin film can be determined. Ag thin films with strong <111> texture were tested. The measured Young moduli agreed with those measured on bulk crystals, but the measured Poisson ratios were low, most likely due to slight transverse folding of the film that developed during the test.


Sign in / Sign up

Export Citation Format

Share Document