Shape controlled growth of ZnO nanorods and fabrication of ZnO/CuO heterojunctions by chemical bath deposition using zinc nitrate hexahydrate and copper (III) nitrate trihydrate

2015 ◽  
Vol 596 ◽  
pp. 201-208 ◽  
Author(s):  
Tomoaki Terasako ◽  
Nur Ashikyn Hambali ◽  
Nurul Azzyaty Jayah ◽  
Toshiya Wakisaka ◽  
Abdul Manaf Hashim ◽  
...  
2012 ◽  
Vol 620 ◽  
pp. 356-361
Author(s):  
Nurulnadia Zakaria ◽  
Hamonangan Nainggolan ◽  
Sabar D. Hutagalung

Zinc oxide (ZnO) nanorods have been grown on silicon substrate by chemical bath deposition method in an aqueous solution that contained zinc nitrate hexahydrate and hexamethylenetetramine. The ZnO seed layer was deposited on substrate to promote growth of ZnO nanorods. Growth temperature was varying in order to form well aligned ZnO nanorods From XRD analysis confirmed that grown ZnO nanorods has wurtzite crystal structure and grown in the [10 direction. Well aligned and better size distribution of ZnO nanorods obtained at 75°C for 1h.


2010 ◽  
Vol 123-125 ◽  
pp. 811-814 ◽  
Author(s):  
Yi Su ◽  
Xiao Ping Zou ◽  
Xiang Min Meng ◽  
Gong Qing Teng ◽  
Gang Qiang Yang ◽  
...  

We are reporting here on an inexpensive and facile fabrication method for ZnO nanorod arrays by hydrothermal growth at low temperature (90°C). In our experiment, ZnO nanostructures were grown on glass substrate using an equimolar (0.1M) aqueous solution of Zn(NO3)2•6H2O (zinc nitrate hexahydrate) and C6H12N4 (HMTA) as precursors solution, and using ammonia solution to controlling the pH levels. It enable easily obtained arrayed ZnO nanorods on substrate, and nanowires which grown on nanorod arrays were identified after about 1 month in the air. The growth process of nanorods and the formation mechanism of nanowires were investigated.


Author(s):  
Hanh

In this work, the hydrothermal growth of ZnO nanorods (NRs) on plastic PVC substrate is presented. It was shown that ZnO NRs with high density and high crystallinity can be successfully grown by implementing saturated nutrition solution of zinc nitrate hexahydrate (Zn[NO3]2·6H2O) and hexamethylenetetramine (C6H12N4) without the assistance of a seed layer. The morphologies of the ZnO nanorods investigated by scanning electron microscope (SEM) demonstrated hexagonal structures. The crystallinity of the ZnO NRs was studied by photoluminescence (PL) spectroscopy. The as-grown ZnO NRs were then utilized for photocatalytic degradation of methylene blue.


2018 ◽  
Vol 778 ◽  
pp. 126-131
Author(s):  
Shazrah Shahzad ◽  
Dawar Ali ◽  
Jawad Asif ◽  
Muhammad Zafar Khan ◽  
Muhammad Aftab Akram ◽  
...  

The growth of vertically aligned ZnO Nanorods arrays using Zinc Nitrate hexahydrate and Hexamethylene Tetramine (HMTA), by Chemical Bath Deposition on Silicon Wafer was investigated. The growth is conducted under influence of Ethane-1,2-diamine, the amine based enhancer was evaluated based on three different ratios (1:0.5, 1:1, 1:1.5) of enhancer to the precursor (Zinc Nitrate and HMTA). The effect different ratios of enhancers on morphology aspect ratio and crystallinity of the as grown Nanorods were studied under Scanning electron microscope (SEM) and X-ray powder diffraction (XRD). Electrical Properties such as current–voltage characteristics were investigated, its correlation to the morphology and aspect ratio of the Nanorods in the presence of 100μL-500μL of Aromatic Compound Cyclohexane and at different applied voltages.


2013 ◽  
Vol 770 ◽  
pp. 68-71 ◽  
Author(s):  
Supphadate Sujinnapram ◽  
Uraiphorn Termsuk ◽  
Atcharawan Charoentam ◽  
Sutthipoj Sutthana

The nanocrystalline ZnO powders were synthesized by a direct thermal decomposition using zinc nitrate hexahydrate as starting materials. The precursor was characterized by TG-DTA to determine the thermal decomposition and crystallization temperature which was found to be at 325 oC. The precursors were calcined at different temperatures of 400, 500, and 600°C for 4 h. The structure of the prepared samples was studied by XRD, confirming the formation of wurtzite structure. The synthesized powders exhibited the UV absorption below 400 nm (3.10 eV) with a well defined absorption peak at around 285 nm (4.35 eV). The estimated direct bandgaps were obtained to be 3.19, 3.16, and 3.14 eV for the ZnO samples thermally decomposed at 400, 500, and 600°C, respectively.


2011 ◽  
Vol 312-315 ◽  
pp. 1044-1048
Author(s):  
Salina Muhamad ◽  
Abu Bakar Suriani ◽  
Mohamad Zainizan Sahdan ◽  
Anuar Ahmad ◽  
Yosri M. Siran ◽  
...  

In this paper, the study of supergrowth VACNTs after being immersed in zinc oxide solution were presented. Vertically aligned carbon nanotubes (VACNTs) were first deposited on silicon with the orientation of [1 0 0] before being immersed in an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine. Physical changes have been observed by scanning electron microscopy, SEM in the VACNTs, where the significant expansion of length of up to almost 0.8 mm was achieved after the immersion of 4.5 hr. The supergrowth of VACNTs was observed and analyzed by energy dispersive x-ray spectroscopy, EDX to substantiate the incorporation of CNTs and ZnO of the sample. Raman spectroscopy and x-ray diffraction, XRD were used to inspect the crystal orientation to support our findings.


Author(s):  
Hanh

In this work, ZnO nanorods (NRs) were successfully grown on printed circuit board substrates (PCBs) by utilizing a one-step, seedless, low-cost hydrothermal method. It was shown that by implementing a galvanic cell structure in an aqueous solution of 80 mM of zinc nitrate hexahydrate and hexamethylenetetramine, ZnO NRs can directly grow on the PCBs substrate without the assistance of a seed layer. The effect of hydrothermal time on the surface morphologies, and the crystallinity of the as-grown ZnO nanorods (NRs) was also investigated. The as-grown ZnO NRs also exhibited a significant enhancement in vertical growth and their crystallinity with 5 hour growth.


2019 ◽  
Vol 233 (7) ◽  
pp. 995-1017 ◽  
Author(s):  
Sadia Ata ◽  
Anila Tabassum ◽  
Ismat Bibi ◽  
Samina Ghafoor ◽  
Abdul Ahad ◽  
...  

Abstract Zinc oxide (ZnO) nanorods were fabricated through hydrothermal route and employed for the adsorption of Cr(VI) ions from aqueous medium. Zinc nitrate hexahydrate (Zn(NO3)2.6H2O) was used as a zinc precursor and Triton-x 100 was used as a capping agent. As synthesized ZnO nanorods were characterized by UV-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-Ray spectroscopy (EDX) techniques. The adsorption affecting parameters were investigated for maximum adsorption of Cr(VI) onto ZnO nanorods. The adsorption kinetics, isotherms, and thermodynamics were applied for adsorption mechanism evaluation. Maximum adsorption of Cr(VI) ions (250 mg/g) was achieved using 0.055 g/L ZnO dose at pH 2.0 for the contact time of 30 min. Pseudo-second-order kinetic model and Langmuir isotherm explained well the Cr(VI) adsorption onto ZnO nanorods. The Cr(VI) adsorption onto ZnO was spontaneous and endothermic in nature. In view of promising adsorption efficiency, ZnO nanorods could possibly be used for Cr(VI) ions removal from wastewater and also extendable for the adsorption of other heavy metals ions.


Sign in / Sign up

Export Citation Format

Share Document