Influence of interlayers on the interfacial behavior of Ag films on polymer substrates

2021 ◽  
pp. 139051
Author(s):  
Megan J. Cordill ◽  
Michael Paulitsch ◽  
Colton Katsarelis ◽  
Barbara Putz ◽  
Alice Lassnig ◽  
...  
Author(s):  
Nurul Hanani Manab ◽  
Elfarizanis Baharudin ◽  
Fauziahanim Che Seman ◽  
Alyani Ismail

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 705
Author(s):  
Yejun Zhong ◽  
Jincheng Zhao ◽  
Taotao Dai ◽  
Jiangping Ye ◽  
Jianyong Wu ◽  
...  

Protein–polyphenol interactions influence emulsifying properties in both directions. Puerarin (PUE) is an isoflavone that can promote the formation of heat-set gels with whey protein isolate (WPI) through hydrogen bonding. We examined whether PUE improves the emulsifying properties of WPI and the stabilities of the emulsions. We found that forming composites with PUE improves the emulsifying properties of WPI in a concentration-dependent manner. The optimal concentration is 0.5%, which is the highest PUE concentration that can be solubilized in water. The PUE not only decreased the droplet size of the emulsions, but also increased the surface charge by forming composites with the WPI. A 21 day storage test also showed that the maximum PUE concentration improved the emulsion stability the most. A PUE concentration of 0.5% improved the stability of the WPI emulsions against environmental stress, especially thermal treatment. Surface protein loads indicated more protein was adsorbed to the oil droplets, resulting in less interfacial WPI concentration due to an increase in specific surface areas. The use of PUE also decreased the interfacial tension of WPI at the oil–water interface. To conclude, PUE improves the emulsifying activity, storage, and environmental stability of WPI emulsions. This result might be related to the decreased interfacial tension of WPI–PUE composites.


2021 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Georgi G. Gochev ◽  
Volodymyr I. Kovalchuk ◽  
Eugene V. Aksenenko ◽  
Valentin B. Fainerman ◽  
Reinhard Miller

The theoretical description of the adsorption of proteins at liquid/fluid interfaces suffers from the inapplicability of classical formalisms, which soundly calls for the development of more complicated adsorption models. A Frumkin-type thermodynamic 2-d solution model that accounts for nonidealities of interface enthalpy and entropy was proposed about two decades ago and has been continuously developed in the course of comparisons with experimental data. In a previous paper we investigated the adsorption of the globular protein β-lactoglobulin at the water/air interface and used such a model to analyze the experimental isotherms of the surface pressure, Π(c), and the frequency-, f-, dependent surface dilational viscoelasticity modulus, E(c)f, in a wide range of protein concentrations, c, and at pH 7. However, the best fit between theory and experiment proposed in that paper appeared incompatible with new data on the surface excess, Γ, obtained from direct measurements with neutron reflectometry. Therefore, in this work, the same model is simultaneously applied to a larger set of experimental dependences, e.g., Π(c), Γ(c), E(Π)f, etc., with E-values measured strictly in the linear viscoelasticity regime. Despite this ambitious complication, a best global fit was elaborated using a single set of parameter values, which well describes all experimental dependencies, thus corroborating the validity of the chosen thermodynamic model. Furthermore, we applied the model in the same manner to experimental results obtained at pH 3 and pH 5 in order to explain the well-pronounced effect of pH on the interfacial behavior of β-lactoglobulin. The results revealed that the propensity of β-lactoglobulin globules to unfold upon adsorption and stretch at the interface decreases in the order pH 3 > pH 7 > pH 5, i.e., with decreasing protein net charge. Finally, we discuss advantages and limitations in the current state of the model.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 889
Author(s):  
Klára Fajstavrová ◽  
Silvie Rimpelová ◽  
Dominik Fajstavr ◽  
Václav Švorčík ◽  
Petr Slepička

The development of new biocompatible polymer substrates is still of interest to many research teams. We aimed to combine a plasma treatment of fluorinated ethylene propylene (FEP) substrate with a technique of improved phase separation. Plasma exposure served for substrate activation and modification of surface properties, such as roughness, chemistry, and wettability. The treated FEP substrate was applied for the growth of a honeycomb-like pattern from polystyrene solution. The properties of the pattern strongly depended on the primary plasma exposure of the FEP substrate. The physico-chemical properties such as changes of the surface chemistry, wettability, and morphology of the prepared pattern were determined. The cell response of primary fibroblasts and osteoblasts was studied on a honeycomb pattern. The prepared honeycomb-like pattern from polystyrene showed an increase in cell viability and a positive effect on cell adhesion and proliferation for both primary fibroblasts and osteoblasts.


2021 ◽  
Vol 264 ◽  
pp. 118040
Author(s):  
Rujun Wei ◽  
Shaojie Zhao ◽  
Lin Zhang ◽  
Liping Feng ◽  
Chengying Zhao ◽  
...  

2020 ◽  
Vol 40 (6) ◽  
pp. 495-506
Author(s):  
Chun-Chun Huang ◽  
Syang-Peng Rwei ◽  
Yun-Shao Huang ◽  
Yao-Chi Shu

AbstractIn this study, composite membranes produced by combining both biopolymer chitosan (CS) and kaolin solvent-free fluid (kaolin-SF) were used as substitutes for the electrolyte membranes in direct-methanol fuel cells. To improve the interfacial morphologies between organic and inorganic substances, kaolin-SF was prepared using the ion exchange method. Subsequently, kaolin-SF of various doping proportions was mixed with CS crosslinked with sulfuric acid to produce thin membranes. The results of heat exhaustion and scanning electron microscope image analysis indicated that kaolin-SF was successfully doped into the CS polymer substrates, and this addition enhanced the thermal stability and mechanical properties of the CS polymer substrates. As long as the concentration of kaolin-SF was below 5 wt.%, the water absorption rate and proton conductivity of the CS/kaolin-SF composite membranes increased along with the kaolin-SF content. These results indicate that CS/kaolin-SF composite membranes are suitable for practical applications.


2021 ◽  
Vol 325 ◽  
pp. 115096
Author(s):  
Niki Pandya ◽  
Gajendra Rajput ◽  
Devi Sirisha Janni ◽  
Gayathri Subramanyam ◽  
Debes Ray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document