Immunological adjuvant effect of Glycyrrhiza uralensis saponins on the immune responses to ovalbumin in mice

Vaccine ◽  
2006 ◽  
Vol 24 (11) ◽  
pp. 1914-1920 ◽  
Author(s):  
Hong-Xiang Sun ◽  
Hang-Jun Pan
Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 186 ◽  
Author(s):  
Miika Martikainen ◽  
Magnus Essand

Glioblastoma (GBM) is the most common type of primary brain tumor in adults. Despite recent advances in cancer therapy, including the breakthrough of immunotherapy, the prognosis of GBM patients remains dismal. One of the new promising ways to therapeutically tackle the immunosuppressive GBM microenvironment is the use of engineered viruses that kill tumor cells via direct oncolysis and via stimulation of antitumor immune responses. In this review, we focus on recently published results of phase I/II clinical trials with different oncolytic viruses and the new interesting findings in preclinical models. From syngeneic preclinical GBM models, it seems evident that oncolytic virus-mediated destruction of GBM tissue coupled with strong adjuvant effect, provided by the robust stimulation of innate antiviral immune responses and adaptive anti-tumor T cell responses, can be harnessed as potent immunotherapy against GBM. Although clinical testing of oncolytic viruses against GBM is at an early stage, the promising results from these trials give hope for the effective treatment of GBM in the near future.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Nandadeva Lokugamage ◽  
Imran H. Chowdhury ◽  
Ronald J. Biediger ◽  
Robert V. Market ◽  
Sayadeth Khounlo ◽  
...  

AbstractThe development of suitable safe adjuvants to enhance appropriate antigen-driven immune responses remains a challenge. Here we describe the adjuvant properties of a small molecule activator of the integrins αLβ2 and α4β1, named 7HP349, which can be safely delivered systemically independent of antigen. 7HP349 directly activates integrin cell adhesion receptors crucial for the generation of an immune response. When delivered systemically in a model of Chagas disease following immunization with a DNA subunit vaccine encoding candidate T. cruzi antigens, TcG2 and TcG4, 7HP349 enhanced the vaccine efficacy in both prophylactic and therapeutic settings. In a prophylactic setting, mice immunized with 7HP349 adjuvanted vaccine exhibited significantly improved control of acute parasite burden in cardiac and skeletal muscle as compared to vaccination alone. When administered with vaccine therapeutically, parasite burden was again decreased, with the greatest adjuvant effect of 7HP349 being noted in skeletal muscle. In both settings, adjuvantation with 7HP349 was effective in decreasing pathological inflammatory infiltrate, improving the integrity of tissue, and controlling tissue fibrosis in the heart and skeletal muscle of acutely and chronically infected Chagas mice. The positive effects correlated with increased splenic frequencies of CD8+T effector cells and an increase in the production of IFN-γ and cytolytic molecules (perforin and granzyme) by the CD4+ and CD8+ effector and central memory subsets in response to challenge infection. This demonstrates that 7HP349 can serve as a systemically administered adjuvant to enhance T cell-mediated immune responses to vaccines. This approach could be applied to numerous vaccines with no reformulation of existing stockpiles.


2013 ◽  
Vol 20 (11) ◽  
pp. 1743-1751 ◽  
Author(s):  
Maowei Wang ◽  
Yan Yue ◽  
Chunsheng Dong ◽  
Xiaoyun Li ◽  
Wei Xu ◽  
...  

ABSTRACTCoxsackievirus B3 (CVB3), a small single-stranded RNA virus, belongs to thePicornaviridaefamily. Its infection is the most common cause of myocarditis, with no vaccine available. Gastrointestinal mucosa is the major entry port for CVB3; therefore, the induction of local immunity in mucosal tissues may help control initial viral infections and alleviate subsequent myocardial injury. Here we evaluated the ability of high-mobility group box 1 (HMGB1) encapsulated in chitosan particles to enhance the mucosal immune responses induced by the CVB3-specific mucosal DNA vaccine chitosan-pVP1. Mice were intranasally coimmunized with 4 doses of chitosan-pHMGB1 and chitosan-pVP1 plasmids, at 2-week intervals, and were challenged with CVB3 4 weeks after the last immunization. Compared with chitosan-pVP1 immunization alone, coimmunization with chitosan-pHMGB1 significantly (P< 0.05) enhanced CVB3-specific fecal secretory IgA levels and promoted mucosal T cell immune responses. In accordance, reduced severity of myocarditis was observed in coimmunized mice, as evidenced by significantly (P< 0.05) reduced viral loads, decreased myocardial injury, and increased survival rates. Flow cytometric analysis indicated that HMGB1 enhanced dendritic cell (DC) recruitment to mesenteric lymph nodes and promoted DC maturation, which might partly account for its mucosal adjuvant effect. This strategy may represent a promising approach to candidate vaccines against CVB3-induced myocarditis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 775-775
Author(s):  
Kasper Hoebe ◽  
Edith Janssen ◽  
Bruce Beutler

Abstract Molecules of microbial origin, and synthetic derivatives of these molecules, have long been used for their immuno-adjuvant effect, and as the key sensors of microbial infection, Toll-like receptors (TLRs) are thought to be essential for adjuvanticity. To the contrary, we now demonstrate the existence of a robust, TLR-independent pathway for adjuvant effect: one that is actually far stronger than the TLR-dependent pathway. Activation of Toll-like receptors (TLRs) and the subsequent production of cytokines such as type I interferon leads to the maturation of dendritic cells (DCs) with upregulation of MHC molecules and costimulatory molecules such as CD40, CD80 and CD86, allowing for optimal interaction between DCs and T-cells. We have determined that TLR signal transduction is minimally dependent upon two adapter proteins, MyD88 and TRIF. In compound homozygous mutant (DKO) mice that lack functional MyD88 and TRIF, there is complete abrogation of all TLR signaling. Such animals therefore comprise a unique model with which to study TLR-independent immune responses. We have now used DKO mice to determine whether an adaptive immune response can be obtained in the absence of TLR signaling. As expected, adjuvanticity obtained via “classical” microbial adjuvants such as complete Freund’s adjuvant or LPS was completely absent in DKO mice. However, subcutaneous administration of syngeneic murine cells expressing ovalbumin and rendered apoptotic by exposure to ultraviolet light resulted in a strong T-cell response in vivo, with impressive production of interferon-g by CD8+ cells and efficient killing of EL-4 cells that expressed CD8-specific OVA peptides, both in wildtype and DKO mice. Adjuvanticity was observed only in the context of apoptosis, in that living cells, not exposed to ultraviolet light before injection, induced little or no response. Moreover, the mixture of the protein antigen with apoptotic cells was insufficient to induce an adaptive immune response; rather, only cells that expressed the protein prior to induction of apoptosis were stimulatory. These results indicate the existence of a specific, cell death-dependent mechanism for adjuvanticity that is TLR-independent and induced by endogenous molecules. We propose that this new adjuvant pathway is of fundamental importance to immune responses at large. We believe that it is required for initiation of the adaptive immune response witnessed in the context of allograft rejection, graft-versus-host disease, and autoimmune diseases as well.


2012 ◽  
Vol 80 (12) ◽  
pp. 4195-4202 ◽  
Author(s):  
Martin Eisenblätter ◽  
Ariane Buchal ◽  
Hermine Gayum ◽  
Edith Jasny ◽  
Pablo Renner Viveros ◽  
...  

ABSTRACTStudying the interaction of dendritic cells (DCs) with bacteria controlled by T-cell-mediated immune responses may reveal novel adjuvants for the induction of cellular immunity. Murine studies and the observation that nocardias infect predominantly immunosuppressed patients have suggested that these bacteria may possess an adjuvant potential. Moreover, adjuvants on the basis of the nocardial cell wall have been applied in clinical studies. Since the handling of adjuvants by DCs may determine the type of immune responses induced by a vaccine, the present study aimed at investigating the interaction of immature human monocyte-derived DCs with live or inactivatedNocardia farcinicain vitroand determining the cellular phenotypic changes as well as alterations in characteristic functions, such as phagocytosis, induction of T-cell proliferation, and cytokine secretion. Human DCs ingestedN. farcinicaand eradicated the bacterium intracellularly. DCs exposed to inactivatedN. farcinicawere activated, i.e., they developed a mature phenotype, downregulated their phagocytic capacity, and stimulated allogeneic T cells in mixed leukocyte reactions. Soluble factors were not involved in this process. To elucidate the potential adjuvant effect ofN. farcinicaon the induction of T-cell-mediated immune responses, we characterized the cytokines produced by nocardia-exposed DCs and detected substantial amounts of tumor necrosis factor alpha (TNF-α) and interleukin-12 p40 (IL-12p40). However, nocardia-treated DCs secreted only small amounts of IL-12p70, which were significantly smaller than the amounts of IL-23. Thus,N. farcinicaactivates DCs, but adjuvants based on this bacterium may have only a limited capacity to induce Th1 immune responses.


Sign in / Sign up

Export Citation Format

Share Document