Identification of a Novel Toll-Like Receptor-Independent Immunoadjuvant Pathway That Depends upon Programmed Cell Death.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 775-775
Author(s):  
Kasper Hoebe ◽  
Edith Janssen ◽  
Bruce Beutler

Abstract Molecules of microbial origin, and synthetic derivatives of these molecules, have long been used for their immuno-adjuvant effect, and as the key sensors of microbial infection, Toll-like receptors (TLRs) are thought to be essential for adjuvanticity. To the contrary, we now demonstrate the existence of a robust, TLR-independent pathway for adjuvant effect: one that is actually far stronger than the TLR-dependent pathway. Activation of Toll-like receptors (TLRs) and the subsequent production of cytokines such as type I interferon leads to the maturation of dendritic cells (DCs) with upregulation of MHC molecules and costimulatory molecules such as CD40, CD80 and CD86, allowing for optimal interaction between DCs and T-cells. We have determined that TLR signal transduction is minimally dependent upon two adapter proteins, MyD88 and TRIF. In compound homozygous mutant (DKO) mice that lack functional MyD88 and TRIF, there is complete abrogation of all TLR signaling. Such animals therefore comprise a unique model with which to study TLR-independent immune responses. We have now used DKO mice to determine whether an adaptive immune response can be obtained in the absence of TLR signaling. As expected, adjuvanticity obtained via “classical” microbial adjuvants such as complete Freund’s adjuvant or LPS was completely absent in DKO mice. However, subcutaneous administration of syngeneic murine cells expressing ovalbumin and rendered apoptotic by exposure to ultraviolet light resulted in a strong T-cell response in vivo, with impressive production of interferon-g by CD8+ cells and efficient killing of EL-4 cells that expressed CD8-specific OVA peptides, both in wildtype and DKO mice. Adjuvanticity was observed only in the context of apoptosis, in that living cells, not exposed to ultraviolet light before injection, induced little or no response. Moreover, the mixture of the protein antigen with apoptotic cells was insufficient to induce an adaptive immune response; rather, only cells that expressed the protein prior to induction of apoptosis were stimulatory. These results indicate the existence of a specific, cell death-dependent mechanism for adjuvanticity that is TLR-independent and induced by endogenous molecules. We propose that this new adjuvant pathway is of fundamental importance to immune responses at large. We believe that it is required for initiation of the adaptive immune response witnessed in the context of allograft rejection, graft-versus-host disease, and autoimmune diseases as well.

2005 ◽  
Vol 110 (1) ◽  
pp. 21-35 ◽  
Author(s):  
Steven E. Williams ◽  
Thomas I. Brown ◽  
Ali Roghanian ◽  
Jean-Michel Sallenave

Elafin and SLPI (secretory leucocyte protease inhibitor) have multiple important roles both in normal homoeostasis and at sites of inflammation. These include antiprotease and antimicrobial activity as well as modulation of the response to LPS (lipopolysaccharide) stimulation. Elafin and SLPI are members of larger families of proteins secreted predominantly at mucosal sites, and have been shown to be modulated in multiple pathological conditions. We believe that elafin and SLPI are important molecules in the controlled functioning of the innate immune system, and may have further importance in the integration of this system with the adaptive immune response. Recent interest has focused on the influence of inflamed tissues on the recruitment and phenotypic modulation of cells of the adaptive immune system and, indeed, the local production of elafin and SLPI indicate that they are ideally placed in this regard. Functionally related proteins, such as the defensins and cathelicidins, have been shown to have direct effects upon dendritic cells with potential alteration of their phenotype towards type I or II immune responses. This review addresses the multiple functions of elafin and SLPI in the inflammatory response and discusses further their roles in the development of the adaptive immune response.


Immunotherapy ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 311-322
Author(s):  
Lizdany Flórez-Álvarez ◽  
Lanie Ruiz-Perez ◽  
Natalia Taborda ◽  
Juan C Hernandez

Toll-like receptors (TLRs) are widely expressed pattern recognition receptors that bind to conserved molecular patterns expressed by pathogens and damaged cells. After recognition, activated TLRs induce the expression of various proinflammatory and antiviral molecules. Thus, TLRs are potential targets for treatment strategies aimed at boosting the adaptive immune response to vaccines, controlling infections, enhancing immune responses during tumor treatment and attenuating immune responses in inflammatory disorders. This Special Report examines the potential of TLRs as targets for the treatment of cancer, infections and inflammatory diseases. Here, we make a particular emphasis on molecules capable of modulating TLRs and their therapeutic applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoping Ma ◽  
Jing Hu ◽  
Yan Yu ◽  
Chengdong Wang ◽  
Yu Gu ◽  
...  

AbstractCladosporium cladosporioides causes asthma and superficial and deep infections, mostly in immunodeficient individuals and animals. This study aimed to investigate whether C. cladosporioides spores can enter the lungs through pulmonary circulation and influence pulmonary immune response. We intravenously injected mice with C. cladosporioides spore suspension and conducted several assays on the lungs. Pulmonary hemorrhage symptoms and congestion were most severe on days 1, 2, and 3 post-inoculation (PI). Extensive inflammatory cell infiltration occurred throughout the period of infection. More spores and hyphae colonizing the lungs were detected on days 1, 2, and 3 PI, and fewer spores and hyphae were observed within 21 d of infection. Numerous macrophages, dendritic cells, and neutrophils were observed on day 5 PI, along with upregulation of CD54, an intercellular adhesion molecule. Th1 and Th2 cells increased after infection; specifically, Th2 cells increased considerably on day 5 PI. These results suggest that days 2 and 5 PI represent the inflammatory peak in the lungs and that the Th2 and Th1 signaling pathways are potentially involved in pulmonary immune responses. In conclusion, the further adaptive immune responses played important roles in establishing effective pulmonary immunity against C. cladosporioides systemic infections based on innate immune responses.


2021 ◽  
Author(s):  
Raymond T. Suhandynata ◽  
Nicholas J. Bevins ◽  
Jenny T. Tran ◽  
Deli Huang ◽  
Melissa A. Hoffman ◽  
...  

AbstractBackgroundThe severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 110 million individuals and led to 2.5 million deaths worldwide. As more individuals are vaccinated, the clinical performance and utility of SARS-CoV-2 serology platforms needs to be evaluated.MethodsThe ability of four commercial SARS-CoV-2 serology platforms to detect previous infection or vaccination were evaluated using a cohort of 53 SARS-CoV-2 PCR-positive patients, 89 SARS-CoV-2-vaccinated healthcare workers (Pfizer or Moderna), and 127 SARS-CoV-2 negative patients. Serology results were compared to a cell based SARS-CoV-2 pseudovirus (PSV) neutralizing antibodies assay.ResultsThe Roche S-(spike) antibody and Diazyme neutralizing antibodies (NAbs) assays detected adaptive immune response in 100.0% and 90.1% of vaccinated individuals who received two-doses of vaccine (initial and booster), respectively. The Roche N-(nucleocapsid) antibody assay and Diazyme IgG assay did not detect adaptive immune response in vaccinated individuals. The Diazyme Nabs assay correlated with the PSV SARS-CoV-2 ID50 neutralization titers (R2= 0.70), while correlation of the Roche S-antibody assay was weaker (R2= 0.39). Median PSV SARS-CoV-2 ID50 titers more than doubled in vaccinated individuals who received two-doses of the Moderna vaccine (ID50: 597) compared to individuals that received a single dose (ID50: 284).ConclusionsThe Roche S-antibody and Diazyme NAbs assays robustly detected adaptive immune responses in SARS-CoV-2 vaccinated individuals and SARS-CoV-2 infected individuals. The Diazyme NAbs assay strongly correlates with the PSV SARS-CoV-2 NAbs in vaccinated individuals. Understanding the reactivity of commercially available serology platforms is important when distinguishing vaccination response versus natural infection.SummaryThe Roche S (spike protein)-antibody and Diazyme neutralizing-antibodies (NAbs) assays were evaluated for their clinical utility in the detection of SARS-CoV-2 related adaptive immune responses by testing SARS-CoV-2 PCR-confirmed patients, SARS-CoV-2-vaccinated individuals, and SARS-CoV-2-negative individuals. Commercial serology results were compared to results generated using a cell-based SARS-CoV-2 pseudovirus (PSV) NAbs assay and previously validated SARS-CoV-2 commercial serology assays (Roche N (nucleocapsid protein) antibody and Diazyme IgG). We demonstrate that the Roche S-antibody and Diazyme NAbs assays detected adaptive immune response in SARS-CoV-2 vaccinated individuals and the presence of SARS-CoV-2 PSV NAbs. The Roche S-antibody assay had an observed positive percent agreement (PPA) of 100% for individuals who received two doses of the Pfizer or Moderna vaccine. By contrast, the Roche N assay and Diazyme IgG assay did not detect vaccine adaptive immune responses. Our findings also indicate that the Diazyme NAbs assay correlates strongly with the levels of SARS-CoV-2 ID50 neutralization titers using the PSV Nab assay in vaccinated individuals.


2020 ◽  
pp. 325-336
Author(s):  
Paul Klenerman

The adaptive immune response is distinguished from the innate immune response by two main features: its capacity to respond flexibly to new, previously unencountered antigens (antigenic specificity), and its enhanced capacity to respond to previously encountered antigens (immunological memory). These two features have provided the focus for much research attention, from the time of Jenner, through Pasteur onwards. Historically, innate and adaptive immune responses have often been treated as separate, with the latter being considered more ‘advanced’ because of its flexibility. It is now clear this not the case, and in recent years the molecular basis for these phenomena has become much better understood.


2020 ◽  
Vol 8 (1) ◽  
pp. e000337 ◽  
Author(s):  
Lorenzo Galluzzi ◽  
Ilio Vitale ◽  
Sarah Warren ◽  
Sandy Adjemian ◽  
Patrizia Agostinis ◽  
...  

Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuanyuan Zhu ◽  
Xiang An ◽  
Xiao Zhang ◽  
Yu Qiao ◽  
Tongsen Zheng ◽  
...  

Abstract The aberrant appearance of DNA in the cytoplasm triggers the activation of cGAS-cGAMP-STING signaling and induces the production of type I interferons, which play critical roles in activating both innate and adaptive immune responses. Recently, numerous studies have shown that the activation of STING and the stimulation of type I IFN production are critical for the anticancer immune response. However, emerging evidence suggests that STING also regulates anticancer immunity in a type I IFN-independent manner. For instance, STING has been shown to induce cell death and facilitate the release of cancer cell antigens. Moreover, STING activation has been demonstrated to enhance cancer antigen presentation, contribute to the priming and activation of T cells, facilitate the trafficking and infiltration of T cells into tumors and promote the recognition and killing of cancer cells by T cells. In this review, we focus on STING and the cancer immune response, with particular attention to the roles of STING activation in the cancer-immunity cycle. Additionally, the negative effects of STING activation on the cancer immune response and non-immune roles of STING in cancer have also been discussed.


2006 ◽  
Vol 291 (6) ◽  
pp. R1644-R1650 ◽  
Author(s):  
Paul C. Dimayuga ◽  
Xiaoning Zhao ◽  
Juliana Yano ◽  
Kuang-Yuh Chyu

Atherosclerosis is a disease associated with aging and is subject to modulation by both the innate and adaptive immune system. The time course of age-dependent changes in immune regulation in the context of atherosclerosis has not been characterized. This study aims to describe alteration of the immune responses to oxidized LDL (oxLDL) during aging that is associated with changes in plaque size and phenotype in apoE(−/−) mice. Mice fed a Western diet were euthanized at 15–17, 36, or >52 wk of age. The descending aortas were stained for assessment of extent of atherosclerosis. Plaque lipid, macrophage, and collagen content were evaluated in aortic sinus lesions. The adaptive immune response to oxLDL was assessed using anti-malondialdehyde-oxidized LDL (MDA-LDL) and copper-oxidized LDL (Cu-oxLDL) IgG, and the innate immune response was assessed using anti-Cu-oxLDL and phosphorylcholine (PC) IgM. Aging was associated with a significant increase in plaque area and collagen content and a decrease in plaque macrophage and lipid content. MDA-LDL IgG significantly increased at 36 wk but was reduced in mice >52 wk. Cu-oxLDL IgG increased with age and IgG-apoB immune complexes were increased in the >52 wk group. Cu-oxLDL and PC IgM significantly increased with age. The expression of splenic cytokines such as IFN-γ, IL-4, and IL-10 increased with age. Our study shows a generalized increase in innate immune responses associated with progression of atherosclerosis and a less inflammatory and less lipid-containing plaque phenotype during aging. The adaptive immune response appeared to be less generalized, with a specific reduction in MDA-LDL IgG.


2006 ◽  
Vol 74 (11) ◽  
pp. 6280-6286 ◽  
Author(s):  
Matthew L. deSchoolmeester ◽  
Harinder Manku ◽  
Kathryn J. Else

ABSTRACT Trichuris muris resides in intimate contact with its host, burrowing within cecal epithelial cells. However, whether the enterocyte itself responds innately to T. muris is unknown. This study investigated for the first time whether colonic intestinal epithelial cells (IEC) produce cytokines or chemokines following T. muris infection and whether divergence of the innate response could explain differentially polarized adaptive immune responses in resistant and susceptible mice. Increased expression of mRNA for the proinflammatory cytokines gamma interferon (IFN-γ) and tumor necrosis factor and the chemokine CCL2 (MCP-1) were seen after infection of susceptible and resistant strains, with the only difference in expression being a delayed increase in CCL2 in BALB/c IEC. These increases were ablated in MyD88−/− mice, and NF-κB p65 was phosphorylated in response to T. muris excretory/secretory products in the epithelial cell line CMT-93, suggesting involvement of the MyD88-NF-κB signaling pathway in IEC cytokine expression. These data reveal that IEC respond innately to T. muris. However, the minor differences identified between resistant and susceptible mice are unlikely to underlie the subsequent development of a susceptible type 1 (IFN-γ-dominated) or resistant type 2 (interleukin-4 [IL-4]/IL-13-dominated) adaptive immune response.


Sign in / Sign up

Export Citation Format

Share Document