Excellent mechanical properties of copper-graphite composites with the addition of tantalum alloying element

Vacuum ◽  
2019 ◽  
Vol 169 ◽  
pp. 108913 ◽  
Author(s):  
Faisal Nazeer ◽  
Zhuang Ma ◽  
Lihong Gao ◽  
Abdul Malik ◽  
Muhammad Abubaker Khan ◽  
...  
2014 ◽  
Vol 887-888 ◽  
pp. 378-383 ◽  
Author(s):  
Yu Chen ◽  
Zheng Jun Yao ◽  
Ping Ze Zhang ◽  
Dong Bo Wei ◽  
Xi Xi Luo ◽  
...  

The structure stability, mechanical properties and electronic structures of B2 phase FeAl intermetallic compounds and FeAl ternary alloys containing V, Cr or Ni were investigated using first-principles density functional theory calculations. Several models are established. The total energies, cohesive energies, lattice constants, elastic constants, density of states, and the charge densities of Fe8Al8 and Fe8XAl7 ( X=V, Cr, Ni ) are calculated. The stable crystal structures of alloy systems are determined due to the cohesive energy results. The calculated lattice contants of Fe-Al-X ( X= V, Cr, Ni) were found to be related to the atomic radii of the alloy elements. The calculation and analysis of the elastic constants showed that ductility of FeAl alloys was improved by the addition of V, Cr or Ni, the improvement was the highest when Cr was used. The order of the ductility was as follows: Fe8CrAl7 > Fe8NiAl7 > Fe8VAl7 > Fe8Al8. The results of electronic structure analysis showed that FeAl were brittle, mainly due to the orbital hybridization of the s, p and d state electron of Fe and the s and p state electrons of Al, showing typical characteristics of a valence bond. Micro-mechanism for improving ductility of FeAl is that d orbital electron of alloying element is maily involved in hybridization of FeAl, alloying element V, Cr and Ni decrease the directional property in bonding of FeAl.


2018 ◽  
Vol 225 ◽  
pp. 03007
Author(s):  
Balaji Bakthavatchalam ◽  
Khairul Habib ◽  
Namdev Patil ◽  
Omar A Hussein

Microstructural Analysis plays an important role in enhancing the mechanical properties of metals and composites. Usually Aluminium Silicon Carbide (Al6063/SiC) alloys are mixed with strontium, sodium and antimony for high durability even though they are toxic and costly. As an alternative calcium is used as an alloying element to improve the mechanical property of Al6063/Sic alloy. In this paper Al6063 is chosen as the matrix material while Sic is used as a reinforcement where calcium powder is added to modify the silicon phase of the composite. Finally, concentration of Silicon carbide is varied from 0 to 150 mg to produce four specimens of Al6063 alloy and it is subjected to microstructure analysis which showed the reduction of grain size and therefore improvement in the hardness from 52.9 HV to 58.4 HV and decrease in the wear loss from 3.97 to 3.27 percentage.


2020 ◽  
Vol 321 ◽  
pp. 05006
Author(s):  
Florian Brunke ◽  
Carsten Siemers ◽  
Joachim Rösler

Due to their outstanding mechanical properties, excellent corrosion resistance and biocompatibility titanium and titanium alloys are the first choice for medical engineering products. Alloys currently used for implant applications are Ti-6Al-4V (ELI) and Ti-6Al-7Nb. Both alloys belong to the class of (α+β)-alloys and contain aluminium as an alloying element. Aluminium is cytotoxic and can cause breast cancer. In addition, the stiffness of (α+β)-alloys is relatively high which can lead to stress shielding, bone degradation and implant loss. For this reason, second-generation titanium alloys like Ti-15Mo (solute-lean metastable β-alloy) and Ti-13Nb-13Zr (β-rich (α+β)-alloy) have been developed. However, their application in medical implants is limited due to a relatively low strength. Therefore, in the present study, the mechanical properties of Ti-15Mo and Ti-13Nb-13Zr have been optimised by thermomechanical treatments to achieve high strengths combined with low stiffnesses. Different phase compositions have been used, namely, α-, β- and ω-phase in Ti-15Mo and α-, β- and αʺ-phase in Ti-13Nb-13Zr. For Ti-15Mo, the required mechanical properties’ combination could not be achieved whereas Ti-13Nb-13Zr showed high strength and a low Young’s modulus after a dedicated thermo-mechanical treatment. This makes the latter alloy a good option for replacing the (α+β)-alloys in implant applications in the future.


2019 ◽  
Vol 130 ◽  
pp. 01005
Author(s):  
Cindy Retno Putri ◽  
Anne Zulfia Syahrial ◽  
Salahuddin Yunus ◽  
Budi Wahyu Utomo

The goal of this research is to improve the mechanical properties such as strength, hardness and wear resistance for automotive application such as brake shoe and bearings due to high cycle, load and impact during their usage. Therefore, another alloying element or reinforcement addition is necessary. In this work, the composites are made by ADC 12 (Al-Si aluminum alloy) as the matrix and reinforced with micro SiC through stir casting process and TiB is added various from (0.04, 0.06, 0.15, 0.3 and 0.5) wt.% that act as grain refiners and 5 wt.% of Mg is added to improve the wettability of the composites. The addition of TiB improves the mechanical properties because the grain becomes finer and uniform, and the addition of Mg makes the matrix and reinforce have better adhesion. The results obtained that the optimum composition was found by adding 0.15 wt.% of TiB with tensile strength improve from 98 MPa to 136.3 MPa, hardness from 35 to 53 HRB and wear rate reduced from 0.006 2 mm3 s−1 to 0.002 3 mm3 s−1 respectively.


2019 ◽  
Vol 8 (1/2) ◽  
pp. 16 ◽  
Author(s):  
K. Ramasamy ◽  
K. Subramanian ◽  
G. Sozhan ◽  
Su. Venkatesan

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744028
Author(s):  
See Leng Tay ◽  
Jowin Van Vliet ◽  
Yuxin Wang ◽  
Fengyan Hou ◽  
Chao Xiong ◽  
...  

Gold (Au) coatings are widely used for electrical contacts in devices, decoration and jewelry. However, the relatively low hardness and poor wear resistance of pure Au coatings lead to a short service life and limit their application. Ni is frequently used as an alloying element to enhance the hardness but it lowers the conductivity of Au coatings. In this research, Co was co-deposited as an alloying element with Au to improve its mechanical properties while maintaining conductivity. TiO2 sol in different concentrations was added to the Au–Co plating bath to further enhance the coating strength. Systematic studies including surface morphology, hardness, wear resistance and electrical conductivity have been carried out. Key results from nanoindentation tests demonstrated that the hardness of Au–Co–TiO2 composite coating was increased by 30% when compared to a pure Au–Co coating, while the electrical conductivity has been kept at the same level.


Sign in / Sign up

Export Citation Format

Share Document