Immune responses of orange-spotted grouper, Epinephelus coioides, against virus-like particles of betanodavirus produced in Escherichia coli

2014 ◽  
Vol 157 (1-2) ◽  
pp. 87-96 ◽  
Author(s):  
Yu-Xiong Lai ◽  
Bao-Lei Jin ◽  
Yu Xu ◽  
Li-jie Huang ◽  
Run-Qing Huang ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mandi Liu ◽  
Yue Zhang ◽  
Di Zhang ◽  
Yun Bai ◽  
Guomei Liu ◽  
...  

AbstractEnterotoxigenic Escherichia coli (ETEC), an essential cause of post-weaning diarrhea (PWD) in piglets, leads to significant economic losses to the pig industry. The present study aims to identify the role of ETEC total RNA in eliciting immune responses to protect animals against ETEC infection. The results showed that the total RNA isolated from pig-derived ETEC K88ac strain effectively stimulated the IL-1β secretion of porcine intestinal epithelial cells (IPEC-J2). The mouse model immunized with ETEC total RNA via intramuscular injection (IM) or oral route (OR) was used to evaluate the protective efficiency of the ETEC total RNA. The results suggested that 70 μg ETEC total RNA administered by either route significantly promoted the production of the serum IL-1β and K88ac specific immunoglobulins (IgG, IgM, and IgA). Besides, the ETEC RNA administration augmented strong mucosal immunity by elevating K88ac specific IgA level in the intestinal fluid. Intramuscularly administered RNA induced a Th1/Th2 shift toward a Th2 response, while the orally administered RNA did not. The ETEC total RNA efficiently protected the animals against the ETEC challenge either by itself or as an adjuvant. The histology characterization of the small intestines also suggested the ETEC RNA administration protected the small intestinal structure against the ETEC infection. Particularly of note was that the immunity level and protective efficacy caused by ETEC RNA were dose-dependent. These findings will help understand the role of bacterial RNA in eliciting immune responses, and benefit the development of RNA-based vaccines or adjuvants.


Vaccine ◽  
2008 ◽  
Vol 26 (44) ◽  
pp. 5662-5667 ◽  
Author(s):  
Angel Cataldi ◽  
Tetyana Yevsa ◽  
Daniel A. Vilte ◽  
Kai Schulze ◽  
Mauricio Castro-Parodi ◽  
...  

2008 ◽  
Vol 91 (6) ◽  
pp. 2225-2235 ◽  
Author(s):  
D.D. Bannerman ◽  
A.C.W. Kauf ◽  
M.J. Paape ◽  
H.R. Springer ◽  
J.P. Goff

Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 539
Author(s):  
Laurits Fredsgaard ◽  
Louise Goksøyr ◽  
Susan Thrane ◽  
Kara-Lee Aves ◽  
Thor G. Theander ◽  
...  

Capsid virus-like particles (cVLPs) are used as molecular scaffolds to increase the immunogenicity of displayed antigens. Modular platforms have been developed whereby antigens are attached to the surface of pre-assembled cVLPs. However, it remains unknown to what extent the employed cVLP backbone and conjugation system may influence the immune response elicited against the displayed antigen. Here, we performed a head-to-head comparison of antigen-specific IgG responses elicited by modular cVLP-vaccines differing by their employed cVLP backbone or conjugation system, respectively. Covalent antigen conjugation (i.e., employing the SpyTag/SpyCatcher system) resulted in significantly higher antigen-specific IgG titers compared to when using affinity-based conjugation (i.e., using biotin/streptavidin). The cVLP backbone also influenced the antigen-specific IgG response. Specifically, vaccines based on the bacteriophage AP205 cVLP elicited significantly higher antigen-specific IgG compared to corresponding vaccines using the human papillomavirus major capsid protein (HPV L1) cVLP. In addition, the AP205 cVLP platform mediated induction of antigen-specific IgG with a different subclass profile (i.e., higher IgG2a and IgG2b) compared to HPV L1 cVLP. These results demonstrate that the cVLP backbone and conjugation system can individually affect the IgG response elicited against a displayed antigen. These data will aid the understanding and process of tailoring modular cVLP vaccines to achieve improved immune responses.


2003 ◽  
Vol 77 (6) ◽  
pp. 3615-3623 ◽  
Author(s):  
Sang-Moo Kang ◽  
Richard W. Compans

ABSTRACT Cholera toxin (CT) is the most potent known mucosal adjuvant, but its toxicity precludes its use in humans. Here, in an attempt to develop safe and effective mucosal adjuvants, we compared immune responses to simian immunodeficiency virus (SIV) virus-like particles (VLPs) after intranasal coimmunization with RANTES, CpG oligodeoxynucleotides (ODN), or CT. Antibody analysis demonstrated that RANTES and CpG ODN had capacities for mucosal adjuvanticity, i.e., for enhancing serum and vaginal antibodies specific to SIV Env, similar to those for CT. RANTES and CpG ODN skewed serum antibodies predominantly to the immunoglobulin G2a isotype. Most importantly, RANTES and CpG ODN were more effective than CT in increasing neutralizing titers of both serum and vaginal antibodies. After intranasal coadministration with VLPs, RANTES or CpG ODN also induced increased levels of gamma interferon (IFN-γ)-producing lymphocyte and cytotoxic T-lymphocyte activities in both spleen and lymph nodes but did not increase the levels of interleukin-4-producing lymphocytes. The results suggest that RANTES and CpG ODN enhance immune responses in a T-helper-cell-type-1 (Th1)-oriented manner and that they can be used as effective mucosal adjuvants for enhancing both humoral and cellular immune responses in the context of VLPs, which are particulate antigens.


Sign in / Sign up

Export Citation Format

Share Document