scholarly journals Murine hepatitis virus nsp4 N258T mutants are not temperature-sensitive

Virology ◽  
2013 ◽  
Vol 435 (2) ◽  
pp. 210-213 ◽  
Author(s):  
Dia C. Beachboard ◽  
Xiaotao Lu ◽  
Susan C. Baker ◽  
Mark R. Denison
2008 ◽  
Vol 82 (12) ◽  
pp. 5999-6008 ◽  
Author(s):  
Jennifer S. Sparks ◽  
Eric F. Donaldson ◽  
Xiaotao Lu ◽  
Ralph S. Baric ◽  
Mark R. Denison

ABSTRACT Sequencing and reversion analysis of murine hepatitis virus (MHV) temperature-sensitive (ts) viruses has identified putative ts mutations in the replicase nonstructural proteins (nsp's) of these coronaviruses. In this study, reverse transcriptase PCR sequencing of the RNA genome of an isolate of the MHV ts virus Alb ts6, referred to as Alb/ts/nsp5/V148A, identified a putative ts mutation in nsp5 (T10651C, Val148Ala), the viral 3C-like proteinase (3CLpro). The introduction of the T10651C mutation into the infectious MHV clone resulted in the recovery of a mutant virus, the nsp5/V148A virus, that demonstrated reduced growth and nsp5 proteinase activity identical to that of Alb/ts/nsp5/V148A at the nonpermissive temperature. Sequence analysis of 40°C revertants of Alb/ts/nsp5/V148A identified primary reversion to Ala148Val in nsp5, as well as two independent second-site mutations resulting in Ser133Asn and His134Tyr substitutions in nsp5. The introduction of the Ser133Asn or His134Tyr substitution into the cloned nsp5/V148A mutant virus background resulted in the recovery of viruses with increased growth fitness and the partial restoration of nsp5 activity at the nonpermissive temperature. Modeling of the nsp5 structure of Alb/ts/nsp5/V148A predicted that the Val148Ala mutation alters residue 148 interactions with residues of the substrate binding S1 subsite of the nsp5 active-site cavity. This study identifies novel residues in nsp5 that may be important for regulating substrate specificity and nsp5 proteinase activity.


2007 ◽  
Vol 81 (13) ◽  
pp. 7086-7098 ◽  
Author(s):  
Eric F. Donaldson ◽  
Rachel L. Graham ◽  
Amy C. Sims ◽  
Mark R. Denison ◽  
Ralph S. Baric

ABSTRACT Coronaviruses are the largest RNA viruses, and their genomes encode replication machinery capable of efficient replication of both positive- and negative-strand viral RNAs as well as enzymes capable of processing large viral polyproteins into putative replication intermediates and mature proteins. A model described recently by Sawicki et al. (S. G. Sawicki, D. L. Sawicki, D. Younker, Y. Meyer, V. Thiel, H. Stokes, and S. G. Siddell, PLoS Pathog. 1:e39, 2005), based upon complementation studies of known temperature-sensitive (TS) mutants of murine hepatitis virus (MHV) strain A59, proposes that an intermediate comprised of nsp4 to nsp10/11 (∼150 kDa) is involved in negative-strand synthesis. Furthermore, the mature forms of nsp4 to nsp10 are thought to serve as cofactors with other replicase proteins to assemble a larger replication complex specifically formed to transcribe positive-strand RNAs. In this study, we introduced a single-amino-acid change (nsp10:Q65E) associated with the TS-LA6 phenotype into nsp10 of the infectious clone of MHV. Growth kinetic studies demonstrated that this mutation was sufficient to generate the TS phenotype at permissive and nonpermissive temperatures. Our results demonstrate that the TS mutant variant of nsp10 inhibits the main protease, 3CLpro, blocking its function completely at the nonpermissive temperature. These results implicate nsp10 as being a critical factor in the activation of 3CLpro function. We discuss how these findings challenge the current hypothesis that nsp4 to nsp10/11 functions as a single cistron in negative-strand RNA synthesis and analyze recent complementation data in light of these new findings.


1998 ◽  
Vol 72 (1) ◽  
pp. 497-503 ◽  
Author(s):  
J. W. A. Rossen ◽  
R. de Beer ◽  
G.-J. Godeke ◽  
M. J. B. Raamsman ◽  
M. C. Horzinek ◽  
...  

ABSTRACT Coronaviruses are assembled by budding into a pre-Golgi compartment from which they are transported along the secretory pathway to leave the cell. In cultured epithelial cells, they are released in a polarized fashion; depending on the virus and cell type, they are sorted preferentially either to the apical domain or to the basolateral plasma membrane domain. In this study, we investigated the role of the coronavirus spike protein, because of its prominent position in the virion the prime sorting candidate, in the directionality of virus release. Three independent approaches were taken. (i) The inhibition of N glycosylation by tunicamycin resulted in the synthesis of spikeless virions. The absence of spikes, however, did not influence the polarity in the release of virions. Thus, murine hepatitis virus strain A59 (MHV-A59) was still secreted from the basolateral membranes of mTAL and LMR cells and from the apical sides of MDCKMHVRcells, whereas transmissible gastroenteritis virus (TGEV) was still released from the apical surfaces of LMR cells. (ii) Spikeless virions were also studied by using the MHV-A59 temperature-sensitive mutant Albany 18. When these virions were produced in infected LMR and MDCKMHVR cells at the nonpermissive temperature, they were again preferentially released from basolateral and apical membranes, respectively. (iii) We recently demonstrated that coronavirus-like particles resembling normal virions were assembled and released when the envelope proteins M and E were coexpressed in cells (H. Vennema, G.-J. Godeke, J. W. A. Rossen, W. F. Voorhout, M. C. Horzinek, D.-J. E. Opstelten, and P. J. M. Rottier, EMBO J. 15:2020–2028, 1996). The spikeless particles produced in mTAL cells by using recombinant Semliki Forest viruses to express these two genes of MHV-A59 were specifically released from basolateral membranes, i.e., with the same polarity as that of wild-type MHV-A59. Our results thus consistently demonstrate that the spike protein is not involved in the directional sorting of coronaviruses in epithelial cells. In addition, our observations with tunicamycin show that contrary to the results with some secretory proteins, the N-linked oligosaccharides present on the viral M proteins of coronaviruses such as TGEV also play no role in viral sorting. The implications of these conclusions are discussed.


2013 ◽  
Vol 87 (23) ◽  
pp. 12611-12618 ◽  
Author(s):  
Christopher C. Stobart ◽  
Nicole R. Sexton ◽  
Havisha Munjal ◽  
Xiaotao Lu ◽  
Katrina L. Molland ◽  
...  

Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.


2010 ◽  
Vol 84 (19) ◽  
pp. 10148-10158 ◽  
Author(s):  
Helen L. Stokes ◽  
Surendranath Baliji ◽  
Chang Guo Hui ◽  
Stanley G. Sawicki ◽  
Susan C. Baker ◽  
...  

ABSTRACT We report an RNA-negative, temperature-sensitive (ts) mutant of Murine hepatitis virus, Bristol ts31 (MHV-Brts31), that defines a new complementation group within the MHV replicase gene locus. MHV-Brts31 has near-normal levels of RNA synthesis at the permissive temperature of 33°C but is unable to synthesize viral RNA when the infection is initiated and maintained at the nonpermissive temperature of 39.5°C. Sequence analysis of MHV-Brts31 RNA indicated that a single G-to-A transition at codon 1307 in open reading frame 1a, which results in a replacement of methionine-475 with isoleucine in nonstructural protein 3 (nsp3), was responsible for the ts phenotype. This conclusion was confirmed using a vaccinia virus-based reverse genetics system to produce a recombinant virus, Bristol tsc31 (MHV-Brtsc31), which has the same RNA-negative ts phenotype and complementation profile as those of MHV-Brts31. The analysis of protein synthesis in virus-infected cells showed that, at the nonpermissive temperature, MHV-Brtsc31 was not able to proteolytically process either p150, the precursor polypeptide of the replicase nonstructural proteins nsp4 to nsp10, or the replicase polyprotein pp1ab to produce nsp12. The processing of replicase polyprotein pp1a in the region of nsp1 to nsp3 was not affected. Transmission electron microscopy showed that, compared to revertant virus, the number of double-membrane vesicles in MHV-Brts31-infected cells is reduced at the nonpermissive temperature. These results identify a new cistron in the MHV replicase gene locus and show that nsp3 has an essential role in the assembly of a functional MHV replication-transcription complex.


Virology ◽  
1984 ◽  
Vol 137 (2) ◽  
pp. 297-304 ◽  
Author(s):  
Dennis P. Jackson ◽  
Dean H. Percy ◽  
Vincent L. Morris

2001 ◽  
Vol 75 (6) ◽  
pp. 2792-2802 ◽  
Author(s):  
Dawn K. Krueger ◽  
Sean M. Kelly ◽  
Daniel N. Lewicki ◽  
Rosanna Ruffolo ◽  
Thomas M. Gallagher

ABSTRACT The prototype JHM strain of murine hepatitis virus (MHV) is an enveloped, RNA-containing coronavirus that has been selected in vivo for extreme neurovirulence. This virus encodes spike (S) glycoproteins that are extraordinarily effective mediators of intercellular membrane fusion, unique in their ability to initiate fusion even without prior interaction with the primary MHV receptor, a murine carcinoembryonic antigen-related cell adhesion molecule (CEACAM). In considering the possible role of this hyperactive membrane fusion activity in neurovirulence, we discovered that the growth of JHM in tissue culture selected for variants that had lost murine CEACAM-independent fusion activity. Among the collection of variants, mutations were identified in regions encoding both the receptor-binding (S1) and fusion-inducing (S2) subunits of the spike protein. Each mutation was separately introduced into cDNA encoding the prototype JHM spike, and the set of cDNAs was expressed using vaccinia virus vectors. The variant spikes were similar to that of JHM in their assembly into oligomers, their proteolysis into S1 and S2 cleavage products, their transport to cell surfaces, and their affinity for a soluble form of murine CEACAM. However, these tissue culture-adapted spikes were significantly stabilized as S1-S2 heteromers, and their entirely CEACAM-dependent fusion activity was delayed or reduced relative to prototype JHM spikes. The mutations that we have identified therefore point to regions of the S protein that specifically regulate the membrane fusion reaction. We suggest that cultured cells, unlike certain in vivo environments, select for S proteins with delayed, CEACAM-dependent fusion activities that may increase the likelihood of virus internalization prior to the irreversible uncoating process.


2001 ◽  
Vol 75 (6) ◽  
pp. 2803-2809 ◽  
Author(s):  
Andreas F. Kolb ◽  
Lecia Pewe ◽  
John Webster ◽  
Stanley Perlman ◽  
C. Bruce A. Whitelaw ◽  
...  

ABSTRACT Neutralizing antibodies represent a major host defense mechanism against viral infections. In mammals, passive immunity is provided by neutralizing antibodies passed to the offspring via the placenta or the milk as immunoglobulin G and secreted immunoglobulin A. With the long-term goal of producing virus-resistant livestock, we have generated mice carrying transgenes that encode the light and heavy chains of an antibody that is able to neutralize the neurotropic JHM strain of murine hepatitis virus (MHV-JHM). MHV-JHM causes acute encephalitis and acute and chronic demyelination in susceptible strains of mice and rats. Transgene expression was targeted to the lactating mammary gland by using the ovine β-lactoglobulin promoter. Milk from these transgenic mice contained up to 0.7 mg of recombinant antibody/ml. In vitro analysis of milk derived from different transgenic lines revealed a linear correlation between antibody expression and virus-neutralizing activity, indicating that the recombinant antibody is the major determinant of MHV-JHM neutralization in murine milk. Offspring of transgenic and control mice were challenged with a lethal dose of MHV-JHM. Litters suckling nontransgenic dams succumbed to fatal encephalitis, whereas litters suckling transgenic dams were fully protected against challenge, irrespective of whether they were transgenic. This demonstrates that a single neutralizing antibody expressed in the milk of transgenic mice is sufficient to completely protect suckling offspring against MHV-JHM-induced encephalitis.


Sign in / Sign up

Export Citation Format

Share Document