scholarly journals A novel peptide-based vaccine candidate with protective efficacy against influenza A in a mouse model

Virology ◽  
2018 ◽  
Vol 515 ◽  
pp. 21-28 ◽  
Author(s):  
José Herrera-Rodriguez ◽  
Tjarko Meijerhof ◽  
Hubert G. Niesters ◽  
Grete Stjernholm ◽  
Arnt-Ove Hovden ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Minjin Kim ◽  
Yucheol Cheong ◽  
Jinhee Lee ◽  
Jongkwan Lim ◽  
Sanguine Byun ◽  
...  

Influenza virus infections can cause a broad range of symptoms, form mild respiratory problems to severe and fatal complications. While influenza virus poses a global health threat, the frequent antigenic change often significantly compromises the protective efficacy of seasonal vaccines, further increasing the vulnerability to viral infection. Therefore, it is in great need to employ strategies for the development of universal influenza vaccines (UIVs) which can elicit broad protection against diverse influenza viruses. Using a mouse infection model, we examined the breadth of protection of the caspase-triggered live attenuated influenza vaccine (ctLAIV), which was self-attenuated by the host caspase-dependent cleavage of internal viral proteins. A single vaccination in mice induced a broad reactive antibody response against four different influenza viruses, H1 and rH5 (HA group 1) and H3 and rH7 subtypes (HA group 2). Notably, despite the lack of detectable neutralizing antibodies, the vaccination provided heterosubtypic protection against the lethal challenge with the viruses. Sterile protection was confirmed by the complete absence of viral titers in the lungs and nasal turbinates after the challenge. Antibody-dependent cellular cytotoxicity (ADCC) activities of non-neutralizing antibodies contributed to cross-protection. The cross-protection remained robust even after in vivo depletion of T cells or NK cells, reflecting the strength and breadth of the antibody-dependent effector function. The robust mucosal secretion of sIgA reflects an additional level of cross-protection. Our data show that the host-restricted designer vaccine serves an option for developing a UIV, providing pan-influenza A protection against both group 1 and 2 influenza viruses. The present results of potency and breadth of protection from wild type and reassortant viruses addressed in the mouse model by single immunization merits further confirmation and validation, preferably in clinically relevant ferret models with wild type challenges.


2008 ◽  
Vol 76 (7) ◽  
pp. 3170-3175 ◽  
Author(s):  
Shahida Baqar ◽  
Lisa A. Applebee ◽  
Theron C. Gilliland ◽  
Lanfong H. Lee ◽  
Chad K. Porter ◽  
...  

ABSTRACT Immunogenicity and protective efficacy of three Campylobacter jejuni flagellum-secreted proteins, FlaC, FspA1, and FspA2, were compared by use of a mouse model. Mice were immunized intranasally with each protein with or without LTR192G as the adjuvant and challenged intranasally with C. jejuni 81-176 or CG8486. All three proteins were immunogenic, although FspA1 induced the highest levels of serum immunoglobulin G (IgG) and fecal IgA. Although immunogenic, FlaC provided only 18% protection against disease from C. jejuni 81-176. Immunization with FspA1 resulted in 57.8% protection without adjuvant or 63.8% protection with adjuvant against homologous challenge with 81-176. Alternatively, immunization with FspA2 provided 38.4% (without adjuvant) or 47.2% (with adjuvant) protection against disease from homologous challenge with CG8486. In contrast to FspA2, FspA1 provided some heterologous protection against C. jejuni CG8486 when delivered with (31.2%) or without (44.8%) LTR192G. These results suggest that FspA1 may be a good subunit vaccine candidate against C. jejuni disease.


2021 ◽  
Author(s):  
Wei-Ping Jin ◽  
Jia Lu ◽  
Xiao-Yu Zhang ◽  
Jie Wu ◽  
Zhen-Ni Wei ◽  
...  

Coxsackievirus A5 (CV-A5) has recently emerged as a main hand, foot and mouth disease (HFMD) pathogen. Following a large-scale vaccination campaign against enterovirus 71 (EV-71) in China, the number of HFMD-associated cases with EV-71 was reduced, especially severe and fatal cases. However, the total number of HFMD cases remains high, as HFMD is also caused by other enterovirus serotypes. A multivalent HFMD vaccine containing 4 or 6 antigens of enterovirus serotypes is urgently needed. A formaldehyde-inactivated CV-A5 vaccine derived from Vero cells was used to inoculate newborn Kunming mice on days 3 and 10. The mice were challenged on day 14 with a mouse-adapted CV-A5 strain at a lethal dose, which was lethal for 14-day-old suckling mice. Within 14 days post-challenge, groups of mice immunized with three formulations, empty particles (EPs), full particles (FPs) and a mixture of the EP and FP vaccine candidates, all survived, while 100% of the mock-immunized mice died. Neutralizing antibodies (NtAbs) were detected in the sera of immunized mice, and the NtAb levels were correlated with the survival rate of the challenged mice. The virus loads in organs were reduced, and pathological changes and viral protein expression were weak or not observed in the immunized mice compared with those in alum-inoculated control mice. Another interesting finding was the identification of CV-A5 dense particles (DPs), facilitating morphogenesis study. These results demonstrated that the Vero cell-adapted CV-A5 strain is a promising vaccine candidate and could be used as a multivalent HFMD vaccine component in the future. IMPORTANCE The vaccine candidate strain CV-A5 was produced with a high infectivity titer and a high viral particle yield. Three particle forms, empty particles (EPs), full particles (FPs) and dense particles (DPs), were obtained and characterized after purification. The immunogenicities of EP, FP, and EP+FP were evaluated in mice. Mouse-adapted CV-A5 was generated as a challenge strain to infect 14-day-old mice. An active immunization challenge mouse model was established to evaluate the efficacy of the inactivated vaccine candidate. This animal model mimics vaccination, similar immune responses of the vaccinated. The animal model also tests protective efficacy in response to the vaccine against the disease. This work is important for the preparation of multivalent vaccines against HFMD caused by different emerging strains.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 784
Author(s):  
Angita Shrestha ◽  
Jean-Remy Sadeyen ◽  
Deimante Lukosaityte ◽  
Pengxiang Chang ◽  
Marielle Van Hulten ◽  
...  

Improving the immunogenicity and protective efficacy of vaccines is critical to reducing disease impacts. One strategy used to enhance the immunogenicity of vaccines is the selective delivery of protective antigens to the antigen presenting cells (APCs). In this study, we have developed a targeted antigen delivery vaccine (TADV) system by recombinantly fusing the ectodomain of hemagglutinin (HA) antigen of H9N2 influenza A virus to single chain fragment variable (scFv) antibodies specific for the receptors expressed on chicken APCs; Dec205 and CD11c. Vaccination of chickens with TADV containing recombinant H9HA Foldon-Dec205 scFv or H9HA Foldon-CD11c scFv proteins elicited faster (as early as day 6 post primary vaccination) and higher anti-H9HA IgM and IgY, haemagglutination inhibition, and virus neutralisation antibodies compared to the untargeted H9HA protein. Comparatively, CD11c scFv conjugated H9HA protein showed higher immunogenic potency compared to Dec205 scFv conjugated H9HA protein. The higher immune potentiating ability of CD11c scFv was also reflected in ex-vivo chicken splenocyte stimulation assay, whereby H9HA Foldon-CD11c scFv induced higher levels of cytokines (IFNγ, IL6, IL1β, and IL4) compared to H9HA Foldon-Dec205 scFv. Overall, the results conclude that TADV could be a better alternative to the currently available inactivated virus vaccines.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mandi Liu ◽  
Yue Zhang ◽  
Di Zhang ◽  
Yun Bai ◽  
Guomei Liu ◽  
...  

AbstractEnterotoxigenic Escherichia coli (ETEC), an essential cause of post-weaning diarrhea (PWD) in piglets, leads to significant economic losses to the pig industry. The present study aims to identify the role of ETEC total RNA in eliciting immune responses to protect animals against ETEC infection. The results showed that the total RNA isolated from pig-derived ETEC K88ac strain effectively stimulated the IL-1β secretion of porcine intestinal epithelial cells (IPEC-J2). The mouse model immunized with ETEC total RNA via intramuscular injection (IM) or oral route (OR) was used to evaluate the protective efficiency of the ETEC total RNA. The results suggested that 70 μg ETEC total RNA administered by either route significantly promoted the production of the serum IL-1β and K88ac specific immunoglobulins (IgG, IgM, and IgA). Besides, the ETEC RNA administration augmented strong mucosal immunity by elevating K88ac specific IgA level in the intestinal fluid. Intramuscularly administered RNA induced a Th1/Th2 shift toward a Th2 response, while the orally administered RNA did not. The ETEC total RNA efficiently protected the animals against the ETEC challenge either by itself or as an adjuvant. The histology characterization of the small intestines also suggested the ETEC RNA administration protected the small intestinal structure against the ETEC infection. Particularly of note was that the immunity level and protective efficacy caused by ETEC RNA were dose-dependent. These findings will help understand the role of bacterial RNA in eliciting immune responses, and benefit the development of RNA-based vaccines or adjuvants.


Vaccine ◽  
2012 ◽  
Vol 30 (2) ◽  
pp. 254-264 ◽  
Author(s):  
Libo Dong ◽  
Feng Liu ◽  
Jeffery Fairman ◽  
David K. Hong ◽  
David B. Lewis ◽  
...  

2021 ◽  
Vol 13 (583) ◽  
pp. eabe5449
Author(s):  
Nicole Darricarrère ◽  
Yu Qiu ◽  
Masaru Kanekiyo ◽  
Adrian Creanga ◽  
Rebecca A. Gillespie ◽  
...  

Seasonal influenza vaccines confer protection against specific viral strains but have restricted breadth that limits their protective efficacy. The H1 and H3 subtypes of influenza A virus cause most of the seasonal epidemics observed in humans and are the major drivers of influenza A virus–associated mortality. The consequences of pandemic spread of COVID-19 underscore the public health importance of prospective vaccine development. Here, we show that headless hemagglutinin (HA) stabilized-stem immunogens presented on ferritin nanoparticles elicit broadly neutralizing antibody (bnAb) responses to diverse H1 and H3 viruses in nonhuman primates (NHPs) when delivered with a squalene-based oil-in-water emulsion adjuvant, AF03. The neutralization potency and breadth of antibodies isolated from NHPs were comparable to human bnAbs and extended to mismatched heterosubtypic influenza viruses. Although NHPs lack the immunoglobulin germline VH1-69 residues associated with the most prevalent human stem-directed bnAbs, other gene families compensated to generate bnAbs. Isolation and structural analyses of vaccine-induced bnAbs revealed extensive interaction with the fusion peptide on the HA stem, which is essential for viral entry. Antibodies elicited by these headless HA stabilized-stem vaccines neutralized diverse H1 and H3 influenza viruses and shared a mode of recognition analogous to human bnAbs, suggesting that these vaccines have the potential to confer broadly protective immunity against diverse viruses responsible for seasonal and pandemic influenza infections in humans.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e72217 ◽  
Author(s):  
Viktoria Stab ◽  
Sandra Nitsche ◽  
Thomas Niezold ◽  
Michael Storcksdieck genannt Bonsmann ◽  
Andrea Wiechers ◽  
...  

Vaccine ◽  
2018 ◽  
Vol 36 (46) ◽  
pp. 6918-6925
Author(s):  
Ho Vinh Thang ◽  
Vu Minh Huong ◽  
John C. Victor ◽  
Cao Bao Van ◽  
Nguyen Tuyet Nga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document