Changes in metabolism modulate induced by viroid infection in the orchid Dendrobium officinale

2021 ◽  
pp. 198626
Author(s):  
Shuai Li ◽  
Zhi-Gang Wu ◽  
Ying Zhou ◽  
Zhen-Fei Dong ◽  
Xuan Fei ◽  
...  
PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Can Si ◽  
Chunmei He ◽  
Jaime A. Teixeira da Silva ◽  
Zhenming Yu ◽  
Jun Duan

2021 ◽  
pp. 100995
Author(s):  
Shengchang Tao ◽  
Chunlei Huang ◽  
Zhihong Tan ◽  
Shuna Duan ◽  
Xiaofeng Zhang ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 2826
Author(s):  
Yan Tong ◽  
Hui Huang ◽  
YuHua Wang

Trihelix transcription factors play important roles in plant growth, development and various stress responses. In this study, we identified 32 trihelix family genes (DoGT) in the important Chinese medicinal plant Dendrobium officinale. These trihelix genes could be classified into five different subgroups. The gene structure and conserved functional domain of these trihelix genes were similar in the same subfamily but diverged between different subfamilies. Various stresses responsive cis-elements presented in the promoters of DoGT genes, suggesting that the trihelix genes might respond to the environmental stresses. Expressional changes of DoGT genes in three tissues and under cold treatment suggested that trihelix genes were involved in diverse functions during D. officinale development and cold tolerance. This study provides novel insights into the phylogenetic relationships and functions of the D. officinaletrihelix genes, which will aid future functional studies investigating the divergent roles of trihelix genes belonging to other species.


2021 ◽  
Vol 22 (10) ◽  
pp. 5221
Author(s):  
Danqi Zeng ◽  
Jaime A. Teixeira da Silva ◽  
Mingze Zhang ◽  
Zhenming Yu ◽  
Can Si ◽  
...  

The APETALA2 (AP2) transcription factors (TFs) play crucial roles in regulating development in plants. However, a comprehensive analysis of the AP2 family members in a valuable Chinese herbal orchid, Dendrobium officinale, or in other orchids, is limited. In this study, the 14 DoAP2 TFs that were identified from the D. officinale genome and named DoAP2-1 to DoAP2-14 were divided into three clades: euAP2, euANT, and basalANT. The promoters of all DoAP2 genes contained cis-regulatory elements related to plant development and also responsive to plant hormones and stress. qRT-PCR analysis showed the abundant expression of DoAP2-2, DoAP2-5, DoAP2-7, DoAP2-8 and DoAP2-12 genes in protocorm-like bodies (PLBs), while DoAP2-3, DoAP2-4, DoAP2-6, DoAP2-9, DoAP2-10 and DoAP2-11 expression was strong in plantlets. In addition, the expression of some DoAP2 genes was down-regulated during flower development. These results suggest that DoAP2 genes may play roles in plant regeneration and flower development in D. officinale. Four DoAP2 genes (DoAP2-1 from euAP2, DoAP2-2 from euANT, and DoAP2-6 and DoAP2-11 from basal ANT) were selected for further analyses. The transcriptional activation of DoAP2-1, DoAP2-2, DoAP2-6 and DoAP2-11 proteins, which were localized in the nucleus of Arabidopsis thaliana mesophyll protoplasts, was further analyzed by a dual-luciferase reporter gene system in Nicotiana benthamiana leaves. Our data showed that pBD-DoAP2-1, pBD-DoAP2-2, pBD-DoAP2-6 and pBD-DoAP2-11 significantly repressed the expression of the LUC reporter compared with the negative control (pBD), suggesting that these DoAP2 proteins may act as transcriptional repressors in the nucleus of plant cells. Our findings on AP2 genes in D. officinale shed light on the function of AP2 genes in this orchid and other plant species.


Author(s):  
lixia wang ◽  
Chi-Yu Li ◽  
Chen Hu ◽  
Pi-sen Gong ◽  
Meng-zong Liu ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 432
Author(s):  
Yaling Chen ◽  
Benchang Hu ◽  
Fantao Zhang ◽  
Xiangdong Luo ◽  
Jiankun Xie

Dendrobium officinale is a rare and traditional medicinal plant with high pharmacological and nutritional value. The self-incompatibility mechanism of D. officinale reproductive isolation was formed in the long-term evolution process, but intraspecific hybridization of different germplasm resources leads to a large gap in the yield, quality, and medicinal value of D. officinale. To investigate the biological mechanism of self-incompatibility in D. officinale, cytological observation and the transcriptome analysis was carried out on the samples of self-pollination and cross-pollination in D. officinale. Results for self-pollination showed that the pollen tubes could grow in the style at 2 h, but most of pollen tubes stopped growing at 4 h, while a large number of cross-pollinated pollen tubes grew along the placental space to the base of ovary, indicating that the self-incompatibility of D. officinale may be gametophyte self-incompatibility. A total of 63.41 G basesum of D. officinale style samples from non-pollinated, self-pollination, and cross-pollination by RNA-seq were obtained, and a total of 1944, 1758, and 475 differentially expressed genes (DEGs) in the comparison of CK (non-pollinated) vs. HF (cross-pollination sample), CK vs. SF (self-pollination sample) and SF vs. HF were identified, respectively. Forty-one candidate genes related to self-incompatibility were found by function annotation of DEGs, including 6 Ca2+ signal genes, 4 armed repeat containing (ARC) related genes, 11 S-locus receptor kinase (SRK) related genes, 2 Exo70 family genes, 9 ubiquitin related genes, 1 fatty acid related gene, 6 amino acid-related genes, 1 pollen-specific leucine-rich repeat extensin-like protein (LRX) related gene and 1 lectin receptor-like kinases (RLKs) related gene, showed that self-incompatibility mechanism of D. officinale involves the interaction of multiple genes and pathways. The results can provide a basis for the study of the self-incompatibility mechanism of D. officinale, and provide ideas for the preservation and utilization of high-quality resources of D. officinale.


Sign in / Sign up

Export Citation Format

Share Document