Metabolic accumulation and related synthetic genes of O-acetyl groups in mannan polysaccharides of Dendrobium officinale

PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Can Si ◽  
Chunmei He ◽  
Jaime A. Teixeira da Silva ◽  
Zhenming Yu ◽  
Jun Duan
2020 ◽  
Vol 21 (17) ◽  
pp. 6250
Author(s):  
Can Si ◽  
Jaime A. Teixeira da Silva ◽  
Chunmei He ◽  
Zhenming Yu ◽  
Conghui Zhao ◽  
...  

The acetylation or deacetylation of polysaccharides can influence their physical properties and biological activities. One main constituent of the edible medicinal orchid, Dendrobium officinale, is water-soluble polysaccharides (WSPs) with substituted O-acetyl groups. Both O-acetyl groups and WSPs show a similar trend in different organs, but the genes coding for enzymes that transfer acetyl groups to WSPs have not been identified. In this study, we report that REDUCED WALL ACETYLATION (RWA) proteins may act as acetyltransferases. Three DoRWA genes were identified, cloned, and sequenced. They were sensitive to abscisic acid (ABA), but there were no differences in germination rate and root length between wild type and 35S::DoRWA3 transgenic lines under ABA stress. Three DoRWA proteins were localized in the endoplasmic reticulum. DoRWA3 had relatively stronger transcript levels in organs where acetyl groups accumulated than DoRWA1 and DoRWA2, was co-expressed with polysaccharides synthetic genes, so it was considered as a candidate acetyltransferase gene. The level of acetylation of polysaccharides increased significantly in the seeds, leaves and stems of three 35S::DoRWA3 transgenic lines compared to wild type plants. These results indicate that DoRWA3 can transfer acetyl groups to polysaccharides and is a candidate protein to improve the biological activity of other edible and medicinal plants.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 628
Author(s):  
Dagmara Baraniak ◽  
Jerzy Boryski

This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.


2021 ◽  
Author(s):  
Xiao‐Jin Pei ◽  
Tian‐Tian Bai ◽  
Zhan‐Feng Zhang ◽  
Nan Chen ◽  
Sheng Li ◽  
...  

2021 ◽  
pp. 100995
Author(s):  
Shengchang Tao ◽  
Chunlei Huang ◽  
Zhihong Tan ◽  
Shuna Duan ◽  
Xiaofeng Zhang ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 2826
Author(s):  
Yan Tong ◽  
Hui Huang ◽  
YuHua Wang

Trihelix transcription factors play important roles in plant growth, development and various stress responses. In this study, we identified 32 trihelix family genes (DoGT) in the important Chinese medicinal plant Dendrobium officinale. These trihelix genes could be classified into five different subgroups. The gene structure and conserved functional domain of these trihelix genes were similar in the same subfamily but diverged between different subfamilies. Various stresses responsive cis-elements presented in the promoters of DoGT genes, suggesting that the trihelix genes might respond to the environmental stresses. Expressional changes of DoGT genes in three tissues and under cold treatment suggested that trihelix genes were involved in diverse functions during D. officinale development and cold tolerance. This study provides novel insights into the phylogenetic relationships and functions of the D. officinaletrihelix genes, which will aid future functional studies investigating the divergent roles of trihelix genes belonging to other species.


2021 ◽  
Vol 22 (10) ◽  
pp. 5221
Author(s):  
Danqi Zeng ◽  
Jaime A. Teixeira da Silva ◽  
Mingze Zhang ◽  
Zhenming Yu ◽  
Can Si ◽  
...  

The APETALA2 (AP2) transcription factors (TFs) play crucial roles in regulating development in plants. However, a comprehensive analysis of the AP2 family members in a valuable Chinese herbal orchid, Dendrobium officinale, or in other orchids, is limited. In this study, the 14 DoAP2 TFs that were identified from the D. officinale genome and named DoAP2-1 to DoAP2-14 were divided into three clades: euAP2, euANT, and basalANT. The promoters of all DoAP2 genes contained cis-regulatory elements related to plant development and also responsive to plant hormones and stress. qRT-PCR analysis showed the abundant expression of DoAP2-2, DoAP2-5, DoAP2-7, DoAP2-8 and DoAP2-12 genes in protocorm-like bodies (PLBs), while DoAP2-3, DoAP2-4, DoAP2-6, DoAP2-9, DoAP2-10 and DoAP2-11 expression was strong in plantlets. In addition, the expression of some DoAP2 genes was down-regulated during flower development. These results suggest that DoAP2 genes may play roles in plant regeneration and flower development in D. officinale. Four DoAP2 genes (DoAP2-1 from euAP2, DoAP2-2 from euANT, and DoAP2-6 and DoAP2-11 from basal ANT) were selected for further analyses. The transcriptional activation of DoAP2-1, DoAP2-2, DoAP2-6 and DoAP2-11 proteins, which were localized in the nucleus of Arabidopsis thaliana mesophyll protoplasts, was further analyzed by a dual-luciferase reporter gene system in Nicotiana benthamiana leaves. Our data showed that pBD-DoAP2-1, pBD-DoAP2-2, pBD-DoAP2-6 and pBD-DoAP2-11 significantly repressed the expression of the LUC reporter compared with the negative control (pBD), suggesting that these DoAP2 proteins may act as transcriptional repressors in the nucleus of plant cells. Our findings on AP2 genes in D. officinale shed light on the function of AP2 genes in this orchid and other plant species.


Author(s):  
lixia wang ◽  
Chi-Yu Li ◽  
Chen Hu ◽  
Pi-sen Gong ◽  
Meng-zong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document