Downregulation of calcium-regulated heat stable protein 1 expression by low-temperature stimulation causes reduction of interferon-β expression and sensitivity to influenza viral infection

2021 ◽  
pp. 198659
Author(s):  
Keisuke Nishioka ◽  
Tomo Daidoji ◽  
Takaaki Nakaya
Author(s):  
Rabih Halwani ◽  
Mehrnoosh Doroudchi ◽  
Mohamed El-Far ◽  
Andre Tanel ◽  
Yu Shi ◽  
...  

2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Guo-dong Zhu ◽  
Jing Yu ◽  
Zheng-yu Sun ◽  
Yan Chen ◽  
Hong-mei Zheng ◽  
...  

AbstractGlioblastomas (GBM) is the most common primary malignant brain tumor, and radiotherapy plays a critical role in its therapeutic management. Unfortunately, the development of radioresistance is universal. Here, we identified calcium-regulated heat-stable protein 1 (CARHSP1) as a critical driver for radioresistance utilizing genome-wide CRISPR activation screening. This is a protein with a cold-shock domain (CSD)-containing that is highly similar to cold-shock proteins. CARHSP1 mRNA level was upregulated in irradiation-resistant GBM cells and knockdown of CARHSP1 sensitized GBM cells to radiotherapy. The high expression of CARHSP1 upon radiation might mediate radioresistance by activating the inflammatory signaling pathway. More importantly, patients with high levels of CARHSP1 had poorer survival when treated with radiotherapy. Collectively, our findings suggested that targeting the CARHSP1/TNF-α inflammatory signaling activation induced by radiotherapy might directly affect radioresistance and present an attractive therapeutic target for GBM, particularly for patients with high levels of CARHSP1.


1977 ◽  
Vol 232 (1) ◽  
pp. F50-F57
Author(s):  
T. P. Dousa ◽  
L. D. Barnes

Results of this study demonstrate that vasopressin activates protein kinase in intact renal medullary cells as detected by measurement of the (-cyclic AMP/+cyclic AMP) protein kinase activity ratios in freshly prepared tissue extracts (40,000 X g supernates) from bovine renal medullary slices. The activation of protein kinase was specific for vasopressin since parathyroid hormone, histamine, angiotensin II, or the inactive analog of vasopressin did not activate protein kinase. There was a direct correlation between the extent of protein kinase activation and the elevation in tissue levels of cyclic AMP elicited by increasing doses of vasopressin or with an increase in incubation time. The elevation of tissue cyclic AMP level and maximum activation of protein kinase reached maximum level at a vasopressin concentration of about 2 X 10(-9) M. Incubation of slices with vasopressin caused a dose-dependent decrease in the cyclic AMP-dependent protein kinase activity in the 40,000 X g supernate of homogenate from the renal medullary slices. This effect of vasopressin was specific for protein kinase since activity of lactate dehydrogenase or a specific [3H]colchicine-binding activity was not affected, and the decrease in the protein kinase was not due to the accumulation of a heat-stable protein kinase inhibitor. There was an increase in protein kinase was not due to the accumulation of a heat-stable protein kinase inhibitor. There was an increase in protein kinase activity extracted from 40,000 X g pellets of homogenate prepared from slices exposed to vasopressin. Results thus provide evidence that cyclic AMP-mediated protein kinase activation in the intact cells is an integral part of cellular response of the mammalian renal medulla to vasopressin.


1991 ◽  
Vol 116 (1-4) ◽  
pp. 261-265 ◽  
Author(s):  
T. M. Chambers ◽  
Virginia S. Hinshaw ◽  
Y. Kawaoka ◽  
B. C. Easterday ◽  
R. G. Webster

2009 ◽  
Vol 76 (4) ◽  
pp. 1143-1151 ◽  
Author(s):  
Marina Georgalaki ◽  
Marina Papadelli ◽  
Elina Chassioti ◽  
Rania Anastasiou ◽  
Anastassios Aktypis ◽  
...  

ABSTRACT The aim of the present work was to study the mode of the induction of the biosynthesis of macedocin, the lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Macedocin was produced when the strain was grown in milk but not in MRS or M17 broth. No autoinduction mechanism was observed. Production did not depend on the presence of lactose or galactose in the culture medium or on a coculture of the producer strain with macedocin-sensitive or macedocin-resistant strains. Induction seemed to depend on the presence of one or more heat-stable protein components produced when S. macedonicus ACA-DC 198 was grown in milk. The partial purification of the induction factor was performed by a combination of chromatography methods, and its activity was confirmed by a reverse transcription-PCR approach (RT-PCR). Mass spectrometric (MS) and tandem mass spectrometric (MS/MS) analyses of an induction-active fraction showed the presence of several peptides of low molecular mass corresponding to fragments of αS1- and β-casein as well as β-lactoglobulin. The chemically synthesized αS1-casein fragment 37-55 (2,253.65 Da) was proven to be able to induce macedocin biosynthesis. This is the first time that milk protein degradation fragments are reported to exhibit a bacteriocin induction activity.


2018 ◽  
Vol 7 (2) ◽  
pp. 50-55
Author(s):  
Li Han

AbstractThe harms of seasonal flu and global pandemic influenza have generally attracted attention. However, the currently administered influenza drugs and flu vaccines have certain limitations. Since the discovery of the small interfering RNA (siRNA) and its mediated RNA interference process, this molecule has been widely used in the study of anti-influenza viral infections because of its high specificity and strong selectivity. The results provided new concepts for the prevention and treatment of influenza virus. However, the siRNA still faces an enormous challenge despite extensive studies on this molecule. The research progress of siRNA in anti-influenza viral infection was reviewed in this study.


Sign in / Sign up

Export Citation Format

Share Document