Electronically tunable third-order dual-mode quadrature sinusoidal oscillators employing VDCCs and all grounded components

Integration ◽  
2021 ◽  
Vol 76 ◽  
pp. 99-112
Author(s):  
Suvajit Roy ◽  
Radha Raman Pal
Author(s):  
D. R. Bhaskar ◽  
Ajishek Raj ◽  
Pragati Kumar

This paper introduces four new resistorless, third-order, electronically tunable, quadrature sinusoidal oscillators using three operational transconductance amplifiers (OTAs) and three capacitors. The proposed third-order quadrature sinusoidal oscillators (TOQSOs) provide noninteracting control of the oscillation condition (OC) and oscillation frequency (OF) by changing the transconductance of different OTAs, to produce sustained oscillations and offer quadrature output voltages and currents. Two of the proposed quadrature oscillator circuits have capacitor control of OF, a feature, useful in capacitive transducers. The presented TOQSO structures have good frequency stability and exhibit low active and passive sensitivities. PSPICE simulations using CMOS OTAs along with hardware results (using off-the-shelf available OTA IC LM13700) have also been provided to confirm the workability of the presented circuits.


2019 ◽  
Vol 12 (4) ◽  
pp. 288-292
Author(s):  
Kaijun Song ◽  
Mou Luo ◽  
Cuilin Zhong ◽  
Yuxuan Chen

AbstractA high-isolation diplexer based on a dual-mode substrate integrated waveguide (SIW) resonator is proposed in this paper. Based on the theory of the dual-mode resonator, the miniaturized diplexers are designed by using the SIW dual-mode resonators. The superior isolation of the diplexers is obtained because the two operating modes of the dual-mode SIW resonators are not directly coupled and there is no interference with each other. In order to further improve the isolation of the circuit, the number of the order of the diplexer is added. Equivalent circuits are given to analyze and design the dual-mode high-isolation diplexers. Detailed analyses are given according to the equivalent circuits. The dual-mode third-order and fourth-order diplexers are designed and fabricated. The measured results agree well with the simulated ones. The total sizes of the fabricated third-order and fourth-order diplexers are 1.78λg × 2.64λg and 1.79λg × 3.63λg, respectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Sudhanshu Maheshwari ◽  
Rishabh Verma

This paper presents a novel electronically tunable third-order sinusoidal oscillator synthesized from a simple topology, employing current-mode blocks. The circuit is realized using the active element: Current Controlled Conveyors (CCCIIs) and grounded passive components. The new circuit enjoys the advantages of noninteractive electronically tunable frequency of oscillation, use of grounded passive components, and the simultaneous availability of three sinusoidal voltage outputs. Bias current generation scheme is given for the active elements used. The circuit exhibits good high frequency performance. Nonideal and parasitic study has also been carried out. Wide range frequency tuning is shown with the bias current. The proposed theory is verified through extensive PSPICE simulations using 0.25 μm CMOS process parameters.


2021 ◽  
Vol 6 (4) ◽  
pp. 262-281
Author(s):  
Tapas Kumar Paul ◽  
Radha Raman Pal

This study introduces a third order filter and a third order oscillator configuration. Both the circuits use two voltage difference transconductance amplifiers (VDTAs) and three grounded capacitors. By selecting the input and output terminals properly, current mode and transimpedance mode low-pass and band-pass filters can be obtained without component matching conditions. The natural frequency (ω0) can be tuned electronically. The oscillator circuit provides voltage and current outputs explicitly. The condition of oscillation (CO) and the frequency of oscillation (FO) can be adjusted orthogonally and electronically. The workability of the configurations is judged using TSMC CMOS 0.18 μm technology parameter as well as commercially available LM13700 integrated circuits (ICs). The simulation results show that: for ±0.9V power supply, the power consumption is 1.08 mW for both the configurations, while total harmonic distortions (THDs) are less than 2.06% and 2.17% for the filter and oscillator configurations, respectively.


2021 ◽  
pp. 1-14
Author(s):  
Ajishek Raj ◽  
Data Ram Bhaskar ◽  
Pragati Kumar

2021 ◽  
Vol 11 (16) ◽  
pp. 7357
Author(s):  
San-Fu Wang ◽  
Hua-Pin Chen ◽  
Yitsen Ku ◽  
Fang-Yu Liu

This study presents an electronically tunable configuration for the design of a voltage-mode (VM) biquad with four input terminals and three output terminals. The proposed circuit employs four operational transconductance amplifiers (OTAs) and two grounded capacitors. Depending on the selections of the four input voltage signals, all the standard filtering functions can be realized. The proposed configuration simultaneously provides VM inverting band-pass, non-inverting low-pass, and non-inverting band-reject filtering functions without any component-matching choices. It offers the features of a resistorless structure, high-input impedance, electronic control of the pole frequency and quality factor, and low active and passive sensitivities. The measured power dissipation of the biquad is 0.96 W under 32 mA constant output current. The measured 1 dB power gain compression point of the output inverting band-pass filter is −7 dBm. The measured value of the third-order intercept point is 5.136 dBm, and the measured value of the third-order intermodulation distortion is −50.83 dBc. Moreover, the measured value of the spurious-free dynamic range is 53.49 dB, and the figure-of-merit of the biquad is 268.75 × 103. In addition, an electronically controllable quadrature oscillator (QO) with amplitude of output current can be realized using the proposed biquad. The proposed electronically controllable QO can provide an amplitude modulation signal or an amplitude shift keying signal, and is widely applied in signal processing systems and electronic communication systems. PSpice simulations and experimental results are accomplished.


Author(s):  
Gurumurthy Komanaplli ◽  
Neeta Pandey ◽  
Rajeshwari Pandey

In this paper a new, operational transresistance amplifier (OTRA) based, third order quadrature oscillator (QO) is presented. The proposed structure forms a closed loop using a high pass filter and differentiator. All the resistors employed in the circuit can be implemented using matched transistors operating in linear region thereby making the proposed structure fully integrated and electronically tunable. The effect of non-idealities of OTRA has been analyzed which suggests that for high frequency applications self-compensation can be used. Workability of the proposed QO is verified through SPICE simulations using 0.18μm AGILENT CMOS process parameters. Total harmonic distortion (THD) for the proposed QO is found to be less than 2.5%.The sensitivity, phasenoise analysis is also discussed for the proposed structure.


Sign in / Sign up

Export Citation Format

Share Document