Impact of pre-equilibration and diffusion limited release kinetics on effluent concentration in column leaching tests: Insights from numerical simulations

2017 ◽  
Vol 63 ◽  
pp. 58-73
Author(s):  
Michael Finkel ◽  
Peter Grathwohl
2021 ◽  
pp. 0271678X2110041
Author(s):  
Jesse A Stokum ◽  
Bosung Shim ◽  
Weiliang Huang ◽  
Maureen Kane ◽  
Jesse A Smith ◽  
...  

The perivascular astrocyte endfoot is a specialized and diffusion-limited subcellular compartment that fully ensheathes the cerebral vasculature. Despite their ubiquitous presence, a detailed understanding of endfoot physiology remains elusive, in part due to a limited understanding of the proteins that distinguish the endfoot from the greater astrocyte body. Here, we developed a technique to isolate astrocyte endfeet from brain tissue, which was used to study the endfoot proteome in comparison to the astrocyte somata. In our approach, brain microvessels, which retain their endfoot processes, were isolated from mouse brain and dissociated, whereupon endfeet were recovered using an antibody-based column astrocyte isolation kit. Our findings expand the known set of proteins enriched at the endfoot from 10 to 516, which comprised more than 1/5th of the entire detected astrocyte proteome. Numerous critical electron transport chain proteins were expressed only at the endfeet, while enzymes involved in glycogen storage were distributed to the somata, indicating subcellular metabolic compartmentalization. The endfoot proteome also included numerous proteins that, while known to have important contributions to blood-brain barrier function, were not previously known to localize to the endfoot. Our findings highlight the importance of the endfoot and suggest new routes of investigation into endfoot function.


2005 ◽  
Vol 79 (1) ◽  
pp. 622-625 ◽  
Author(s):  
Hillel Haim ◽  
Israel Steiner ◽  
Amos Panet

ABSTRACT To override the diffusion-limited adsorption step of viral infection, we magnetically synchronized cell attachment. Human immunodeficiency virus type 1-based lentivirus preparations were rendered magnetically reactive by association with magnetite nanoparticles, 50 nm in diameter. Application of a magnetic field resulted in immediate redistribution of the viral inoculum to the cell-associated state and completion of the productive adsorption process within 1 min. Independent of adsorption time, viral concentration, and diffusion rate, infection subsequently progressed by the receptor-mediated entry mechanism. Synchronization of this rate-limiting step of infection may now be applied to analyze isolated events in the viral replication sequence.


2016 ◽  
Vol 792 ◽  
pp. 134-167 ◽  
Author(s):  
M. A. Saxton ◽  
J. P. Whiteley ◽  
D. Vella ◽  
J. M. Oliver

We study the evolution of a thin, axisymmetric, partially wetting drop as it evaporates. The effects of viscous dissipation, capillarity, slip and diffusion-dominated vapour transport are taken into account. A matched asymptotic analysis in the limit of small slip is used to derive a generalization of Tanner’s law that takes account of the effect of mass transfer. We find a criterion for when the contact-set radius close to extinction evolves as the square root of the time remaining until extinction – the famous $d^{2}$-law. However, for a sufficiently large rate of evaporation, our analysis predicts that a (slightly different) ‘$d^{13/7}$-law’ is more appropriate. Our asymptotic results are validated by comparison with numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document