Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid

2013 ◽  
Vol 47 (7) ◽  
pp. 2489-2496 ◽  
Author(s):  
Haoran Dong ◽  
Irene M.C. Lo
Toxics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 26 ◽  
Author(s):  
Yuhuan Sun ◽  
Fangyuan Zheng ◽  
Wenjie Wang ◽  
Shuwu Zhang ◽  
Fayuan Wang

Nano-scale zero-valent iron (nZVI) is among the most common nanoparticles widely used for the treatment of various environmental contaminants. However, little is known about the combined effects of nano-zero-valent iron (nZVI) and other soil amendments on soil remediation and plant performance. For the first time, we studied the remediation of Cr(VI)-contaminated soil using bare nZVI (B-nZVI) and starch-supported nZVI (S-nZVI) in combination with either biochar (BC) or humic acid (HA), and the consequent effects on plant growth and Cr accumulation. Both S-nZVI and B-nZVI decreased the contents of Cr(VI) and available Cr in soil, but increased available Fe content, with S-nZVI generally showing more pronounced effects at a higher dose (1000 mg/kg). B-nZVI exerted no inhibition and even stimulation on plant growth, but 1000 mg/kg S-nZVI produced significant phytotoxicity, resulting in decreased plant growth, low chlorophyll content in leaves, and excessive accumulation of Fe in roots. Each nZVI decreased shoot and root Cr concentrations. BC and HA produced synergistic effects with nZVI on Cr(VI) removal from soil, but HA decreased soil pH and increased the availability of Cr and Fe, implying a potential environmental risk. Addition of BC or HA did not alter the effects of either nZVI on plant growth. In conclusion, combined application of 100 mg/kg nZVI and BC could be an ideal strategy for the remediation of soil contaminated with Cr(VI), whereas high-dose S-nZVI and HA are not recommended in the remediation of agricultural soils for crop production or in the phytostabilization of Cr(VI).


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2939
Author(s):  
Dantong Lin ◽  
Liming Hu ◽  
Irene M. C. Lo ◽  
Zhigang Yu

Nano zero-valent iron (nZVI) has been considered as a promising material for groundwater remediation in the past few decades. The size distribution of nZVI is one of the main factors that influences its transport capability and remediation capacity. However, studies on the size distribution of nZVI under different environmental conditions are still limited. In this study, the influence of the pH (pH = 5, 7, 9) and ionic strength (IS = 0, 15, 30, 45 mM) on the size distribution of nZVI are investigated. The dynamic light scattering (DLS) method is used to study the variation of the size distribution of nZVI aggregate with time, and batch tests are performed to evaluate the efficiency of phosphate removal. Meanwhile, the phosphate removal capacity of nZVI with different size distribution was examined. Experimental results show that under low IS and high pH conditions, nZVI aggregate exhibited a stable, narrow and one-peak size distribution. By contrast, under high IS and low pH conditions, nZVI exhibited a wide and complicated size distribution with multiple peak values. This different pattern in size distribution was further explained by the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The phosphate removal rate of nZVI under acidic and neutral conditions is higher than 98% but is only 68% under alkaline conditions. The phosphate removal capacity is insensitive to the variation of IS since the removal rate is higher than 97% for different IS conditions. Favorable environmental conditions for colloidal stability and removal capacity of nZVI can be different, which needs comprehensive consideration in the application.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 412 ◽  
Author(s):  
Yajun Li ◽  
Yongxiang Zhang ◽  
Qi Jing ◽  
Yuhui Lin

Nano zero-valent iron (NZVI) is widely used for reducing chlorinated organic pollutants in water. However, the stability of the particles will affect the removal rate of the contaminant. In order to enhance the stability of nano zero-valent iron (NZVI), the particles were modified with F-127 as an environmentally friendly organic stabilizer. The study investigated the effect of the F-127 mass ratio on the colloidal stability of NZVI. Results show that the sedimentation behavior of F-NZVI varied at different mass ratios. A biphasic model was used to describe the two time-dependent settling processes (rapid sedimentation followed by slower settling), and the settling rates were calculated. The surface morphology of the synthesized F-NZVI was observed with a scanning electron microscope (SEM), and the functional groups of the samples were analyzed with Fourier Transform Infrared Spectroscopy (FTIR). Results show that the F-127 was successfully coated on the surface of the NZVI, and that significantly improved the stability of NZVI. Finally, in order to optimize the removal rate of 2,4-dichlorophenol (2,4-DCP) by F-NZVI, three variables were tested: the initial concentration 2,4-DCP, the pH, and the F-NZVI dosage. These were evaluated with a Box-Behnken Design (BBD) of response surface methodology (RSM). The experiments were designed by Design Expert software, and the regression model of fitting quadratic model was established. The following optimum removal conditions were determined: pH = 5, 3.5 g·L−1 F-NZVI for 22.5 mg·L−1 of 2,4-DCP.


Author(s):  
Dan Huang ◽  
Zhongyu Ren ◽  
Xiaoyu Li ◽  
Qi Jing

Chitosan-stabilized nano zero-valent iron (CTS-nZVI) prepared by the liquid-phase reduction method has been shown to achieve a good dispersion effect. However, there has been little analysis on the mechanism affecting its stability and transport in saturated porous media. In this paper, settling experiments were conducted to study the stabilization of CTS-nZVI. The transport of CTS-nZVI in saturated porous media at different influencing factors was studied by sand column experiments. The stability mechanism of CTS-nZVI was analyzed from the point of view of colloidal stability by settling experiments and a zeta potential test. The theoretical model of colloidal filtration was applied for the calculation of transport coefficients on the basis of the column experiments data. Considering attachment–detachment effects, a particle transport model was built using HYDRUS-1D software to analyze the transport and spatial distribution of CTS-nZVI in a sand column.


2018 ◽  
Vol 5 (2) ◽  
pp. 88-101
Author(s):  
Nivedita Shukla ◽  
Amit Saxena ◽  
Vatsana Gupta ◽  
Ashok Singh Rawat ◽  
Sarita Shrivastava ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document