scholarly journals The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978–2008)

2016 ◽  
Vol 94 ◽  
pp. 73-85 ◽  
Author(s):  
La Zhuo ◽  
Mesfin M. Mekonnen ◽  
Arjen Y. Hoekstra
2016 ◽  
Author(s):  
Sang-Hyun Lee ◽  
Rabi H. Mohtar ◽  
Jin-Yong Choi ◽  
Seung-Hwan Yoo

Abstract. This study aims to analyse the characteristics of global virtual water trade (GVWT) such as connectivity of each trader, vulnerable importers, and influential countries using degree and eigenvector centrality during the period 2006–2010. The degree centrality was used to measure the connectivity and eigenvector centrality was used to measure the influence on entire GVWT network. Mexico, Egypt, China, Korea Rep., and Japan were classified to vulnerable importers because they imported a lot of virtual water with the low connectivity. Especially, Egypt had 15.3 Gm³ year-1 blue water savings effects through GVWT, thus the vulnerable structure could cause the water shortage problem in importer. The entire GVWT network could be changed by a few nodes which call influential traders, and we figured out the influential traders using eigenvector centrality. In GVWT for food crops, the USA, Russian Federation, Thailand, and Canada had high eigenvector with a large volume of green water trade. In case of blue water trade, western Asia, Pakistan, and India had high eigenvector centrality. For feed crops, the green water trade in the USA, Brazil, and Argentina was the most influential. However, Argentina and Pakistan used the high proportion of internal water resource for virtual water export (32.9 and 25.1 %), thus rest of traders should consider the water resource management in these exporters carefully.


2016 ◽  
Vol 20 (10) ◽  
pp. 4223-4235 ◽  
Author(s):  
Sang-Hyun Lee ◽  
Rabi H. Mohtar ◽  
Jin-Yong Choi ◽  
Seung-Hwan Yoo

Abstract. This study aims to analyze the characteristics of global virtual water trade (GVWT), such as the connectivity of each trader, vulnerable importers, and influential countries, using degree and eigenvector centrality during the period 2006–2010. The degree centrality was used to measure the connectivity, and eigenvector centrality was used to measure the influence on the entire GVWT network. Mexico, Egypt, China, the Republic of Korea, and Japan were classified as vulnerable importers, because they imported large quantities of virtual water with low connectivity. In particular, Egypt had a 15.3 Gm3 year−1 blue water saving effect through GVWT: the vulnerable structure could cause a water shortage problem for the importer. The entire GVWT network could be changed by a few countries, termed "influential traders". We used eigenvector centrality to identify those influential traders. In GVWT for food crops, the USA, Russian Federation, Thailand, and Canada had high eigenvector centrality with large volumes of green water trade. In the case of blue water trade, western Asia, Pakistan, and India had high eigenvector centrality. For feed crops, the green water trade in the USA, Brazil, and Argentina was the most influential. However, Argentina and Pakistan used high proportions of internal water resources for virtual water export (32.9 and 25.1 %); thus other traders should carefully consider water resource management in these exporters.


2020 ◽  
Vol 47 (6) ◽  
pp. 996-1004
Author(s):  
Wenliang Li ◽  
Qing Sun ◽  
Guowei Cheng ◽  
Weiping Wang ◽  
Shisong Qu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 748
Author(s):  
Ming Li ◽  
Qingsong Tian ◽  
Yan Yu ◽  
Yueyan Xu ◽  
Chongguang Li

The sustainable and efficient use of water resources has gained wide social concern, and the key point is to investigate the virtual water trade of the water-scarcity region and optimize water resources allocation. In this paper, we apply a multi-regional input-output model to analyze patterns and the spillover risks of the interprovincial virtual water trade in the Yellow River Economic Belt, China. The results show that: (1) The agriculture and supply sector as well as electricity and hot water production own the largest total water use coefficient, being high-risk water use sectors in the Yellow River Economic Belt. These two sectors also play a major role in the inflow and outflow of virtual water; (2) The overall situation of the Yellow River Economic Belt is virtual water inflow, but the pattern of virtual water trade between eastern and western provinces is quite different. Shandong, Henan, Shaanxi, and Inner Mongolia belong to the virtual water net inflow area, while the virtual water net outflow regions are concentrated in Shanxi, Gansu, Xinjiang, Ningxia, and Qinghai; (3) Due to higher water resource stress, Shandong and Shanxi suffer a higher cumulative risk through virtual water trade. Also, Shandong, Henan, and Inner Mongolia have a higher spillover risk to other provinces in the Yellow River Economic Belt.


Author(s):  
Jie Deng ◽  
Cai Li ◽  
Ling Wang ◽  
Shuxia Yu ◽  
Xu Zhang ◽  
...  

2021 ◽  
Author(s):  
Elena De Petrillo ◽  
Marta Tuninetti ◽  
Francesco Laio

<p>Through the international trade of agricultural goods, water resources that are physically used in the country of production are virtually transferred to the country of consumption. Food trade leads to a global redistribution of freshwater resources, thus shaping distant interdependencies among countries. Recent studies have shown how agricultural trade drives an outsourcing of environmental impacts pertaining to depletion and pollution of freshwater resources, and eutrophication of river bodies in distant producer countries. What is less clear is how the final consumer – being an individual, a company, or a community- impacts the water resources of producer countries at a subnational scale. Indeed, the variability of sub-national water footprint (WF in m<sup>3</sup>/tonne) due to climate, soil properties, irrigation practices, and fertilizer inputs is generally lost in trade analyses, as most trade data are only available at the country scale. The latest version of the Spatially Explicit Information on Production to Consumption Systems model  (SEI-PCS) by Trase provides detailed data on single trade flows (in tonne) along the crop supply chain: from local municipalities- to exporter companies- to importer companies – to the final consumer countries. These data allow us to capitalize on the high-resolution data of agricultural WF available in the literature, in order to quantify the sub-national virtual water flows behind food trade. As a first step, we assess the detailed soybean trade between Brazil and Italy. This assessment is relevant for water management because the global soybean flow reaching Italy may be traced back to 374 municipalities with heterogeneous agricultural practises and water use efficiency. Results show that the largest flow of virtual water from a Brazilian municipality to Italy -3.52e+07 m<sup>3</sup> (3% of the total export flow)- comes from Sorriso in the State of Mato Grosso. Conversely, the highest flow of blue water -1.56e+05 m<sup>3</sup>- comes from Jaguarão, in the State of Rio Grande do Sul, located in the Brazilian Pampa. Further, the analysis at the company scale reveals that as many as 37 exporting companies can be identified exchanging to Italy;  Bianchini S.A is the largest virtual water trader (1.88 e+08 m<sup>3</sup> of green water and 3,92 e+06 m<sup>3</sup> of blue water), followed by COFCO (1,06 e+08 m<sup>3</sup> of green water and 6.62 m<sup>3</sup> of blue water)  and Cargill ( 6.96 e+07 m<sup>3</sup> of green water and 2.80 e+02 m<sup>3</sup> of blue water). By building the bipartite network of importing companies and municipalities originating the fluxes we are able to efficiently disaggregate the supply chains , providing novel tools to build sustainable water management strategies.</p>


Sign in / Sign up

Export Citation Format

Share Document