Characterization of erosion and failure processes of spark plugs after field service in natural gas engines

Wear ◽  
2005 ◽  
Vol 259 (7-12) ◽  
pp. 1063-1067 ◽  
Author(s):  
H.T. Lin ◽  
M.P. Brady ◽  
R.K. Richards ◽  
D.M. Layton
Author(s):  
Bipin Bihari ◽  
Munidhar S. Biruduganti ◽  
Roberto Torelli ◽  
Dan Singleton

Lean-burn combustion dominates the current reciprocating engine R&D efforts due to its inherent benefits of high BTE and low emissions. The ever-increasing push for high power densities necessitates high boost pressures. Therefore, the reliability and durability of ignition systems face greater challenges. In this study, four ignition systems, namely, stock Capacitive discharge ignition (CDI), Laser ignition, Flame jet ignition (FJI), and Nano-pulse delivery (NPD) ignition were tested using a single cylinder natural gas engine. Engine performance and emissions characteristics are presented highlighting the benefits and limitations of respective ignition systems. Optical tools enabled delving into the ignition delay period and assisted with some characterization of the spark and its impact on subsequent processes. It is evident that advanced ignition systems such as Lasers, Flame-jets and Nano-pulse delivery enable extension of the lean ignition limits of fuel/air mixtures compared to base CDI system.


Author(s):  
Daniel M. Wise ◽  
Daniel B. Olsen ◽  
Myoungjin Kim

Producer gas, any of a variety of gases generated from biomass gasification, is a renewable gaseous fuel that can be burned in gas engines for power production. Producer gas consists primarily of methane, hydrogen, carbon monoxide, carbon dioxide, and nitrogen. These gas blends can be problematic as a fuel for natural gas engines due to widely varying composition and significantly different fuel properties than natural gas. Characterization of combustion properties of different producer gas compositions is critical if the gas engine is to be operated reliably and at the greatest efficiency possible. A sample space of 35 producer gas blends consisting of distinct percentages of combustible gases (methane, hydrogen, and carbon monoxide) and diluent (carbon dioxide and nitrogen) is created to provide a basis for methane number testing. A test cell is established to mix producer gas blends of desired constituent makeup for consumption in a Waukesha F2 Cooperative Fuel Research (CFR) engine to directly measure methane number for each blend. Additional measurements include combustion pressure statistics, fuel consumption, and power output. Methane number is correlated to combustion pressure statistics and producer gas properties. Methane number measurements are compared with predictions using the software AVL Methane, often employed by engine manufacturers to characterize gaseous fuels. Measured methane number shows a strong correlation to 0–10% and 10–90% burn durations. The predicted methane number values from AVL Methane are significantly different than measured methane number in many cases. The error in the prediction is strongly dependent on the amount of carbon monoxide and hydrogen in the producer gas.


2015 ◽  
Vol 1092-1093 ◽  
pp. 498-503
Author(s):  
La Xiang ◽  
Yu Ding

Natural gas (NG) is one of the most promising alternative fuels of diesel and petrol because of its economics and environmental protection. Generally the NG engine share the similar structure profile with diesel or petrol engine but the combustion characteristics of NG is varied from the fuels, so the investigation of NG engine combustion process receive more attentions from the researchers. In this paper, a zero-dimensional model on the basis of Vibe function is built in the MATLAB/SIMULINK environment. The model provides the prediction of combustion process in natural gas engines, which has been verified by the experimental data in the NG test bed. Furthermore, the influence of NG composition on engine performance is investigated, in which the in-cylinder maximum pressure and temperature and mean indicated pressure are compared using different type NG. It is shown in the results that NG with higher composition of methane results in lower maximum temperature and mean indicated pressure as well as higher maximum pressure.


Author(s):  
Doh-Won Lee ◽  
Josias Zietsman ◽  
Mohamadreza Farzaneh ◽  
Jeremy Johnson

Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 119466
Author(s):  
J.J. López ◽  
R. Novella ◽  
J. Gomez-Soriano ◽  
P.J. Martinez-Hernandiz ◽  
F. Rampanarivo ◽  
...  

Author(s):  
Stewart Xu Cheng ◽  
James S. Wallace

Glow plugs are a possible ignition source for direct injected natural gas engines. This ignition assistance application is much different than the cold start assist function for which most glow plugs have been designed. In the cold start application, the glow plug is simply heating the air in the cylinder. In the cycle-by-cycle ignition assist application, the glow plug needs to achieve high surface temperatures at specific times in the engine cycle to provide a localized source of ignition. Whereas a simple lumped heat capacitance model is a satisfactory representation of the glow plug for the air heating situation, a much more complex situation exists for hot surface ignition. Simple measurements and theoretical analysis show that the thickness of the heat penetration layer is small within the time scale of the ignition preparation period (1–2 ms). The experiments and analysis were used to develop a discretized representation of the glow plug domain. A simplified heat transfer model, incorporating both convection and radiation losses, was developed for the discretized representation to compute heat transfer to and from the surrounding gas. A scheme for coupling the glow plug model to the surrounding gas computational domain in the KIVA-3V engine simulation code was also developed. The glow plug model successfully simulates the natural gas ignition process for a direct-injection natural gas engine. As well, it can provide detailed information on the local glow plug surface temperature distribution, which can aid in the design of more reliable glow plugs.


Author(s):  
How Wei Benjamin Teo ◽  
Anutosh Chakraborty ◽  
Kim Tiow Ooi

As promising material for gas storage applications, MIL-101(Cr) can further be modified by doping with alkali metal (Li+, Na+, K+) ions. However, the doping concentration should be optimized below 10% to improve the methane adsorption. This article presents (i) the synthesis of MIL-101 (Cr) Metal Organic Frameworks, (ii) the characterization of the proposed doped adsorbent materials by X-ray Diffraction, Scanning Electron Microscopy, N2 Adsorption, Thermo-Gravimetric Analyzer, and (iii) the measurements of methane uptakes for the temperatures ranging from 125 K to 303 K and pressures up to 10 bar. It is found that the Na+ doped MIL-101(Cr) exhibits CH4 uptake capacity of (i) 295 cm3/cm3 at 10 bar and 160 K and (ii) 95 cm3/cm3 at 10 bar at 298 K. This information is important to design adsorbed natural gas (ANG) storage tank under ANG-LNG (liquefied natural gas) coupling conditions.


Sign in / Sign up

Export Citation Format

Share Document