A probability model of predicting the sand erosion in elbows for annular flow

Wear ◽  
2019 ◽  
Vol 422-423 ◽  
pp. 167-179 ◽  
Author(s):  
Rong Kang ◽  
Haixiao Liu
Author(s):  
Ri Zhang ◽  
Sheng Dong

The phase distributions and mechanical properties of annular flow are constantly fluctuating, so they can be regarded as random states. The probability analysis of annular flow is an appropriate method to research the formation, development and evolution of the flow pattern. In the present work, the atomization and deposition rates of fully developed annular flow are investigated in detail by the method of a probability analysis. First, the basic equations of the probability model are applied to solve some important intermediate parameters of annular flow. Second, the atomization and deposition rates of any size droplets are closely related to the probabilities of droplet generation and disappearance. Third, the interchange rate of the whole liquid phase can be obtained by summing the generation and disappearance probabilities of arbitrary size droplets. The predictions of atomization rate are well verified by comparing with the experimental date of 71 cases from three sets of tests. It is demonstrated that the probability model can accurately calculate the atomization rate of the fully developed annular flow for most cases. The predicted deviation for some cases may be caused by the neglect of droplet breakup process. Furthermore, the effects on the atomization rate of seven parameters of annular flow are discussed in detail.


Wear ◽  
2015 ◽  
Vol 342-343 ◽  
pp. 377-390 ◽  
Author(s):  
Haixiao Liu ◽  
Zhongwei Zhou ◽  
Mingyang Liu

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Ri Zhang ◽  
Haixiao Liu ◽  
Sheng Dong ◽  
Mingyang Liu

The movement and distribution of each phase in annular flow can be considered as random events at a microscopic level. Hence, a probability analysis is appropriate to estimate the morphological features and mechanical characteristics of annular flow from a macroscopic scale. In the present work, three characteristic parameters including the film thickness, interfacial shear stress, and characteristic droplet size are predicted by a probability model as the statistical results of abundant samples. The film thickness can be directly calculated as one of the solutions to the basic equations of annular flow. The interfacial shear stress is estimated as a combination of the frictional and dragging components. The droplet size distribution is obtained using a method of undetermined coefficients. These characteristic parameters are well verified by comparing with the experimental data available in the literature. It is demonstrated that the probability model can accurately calculate the film thickness and maximum droplet size, but the predictions of the interfacial shear stress and mean droplet size are relatively coarse. Furthermore, the effects on the film thickness and Sauter mean diameter of other parameters are discussed in detail. Finally, some important phenomena observed in experiments are interpreted by the probability model.


Author(s):  
Rong Kang ◽  
Haixiao Liu

Abstract Sand erosion is a severe problem during the transportation of oil and gas in pipelines. The technology of multiphase transportation is widely applied in production, due to its high efficiency and low cost. Among various multiphase flow patterns, annular flow is a common flow pattern in the transportation process. During the transportation of oil and gas from the hydrocarbon reservoir to the final destination, the flow direction of the mixture in pipelines is mainly changed by the bend orientation. The bend orientation obviously changes the distributions of the liquid film and sand particles in annular flow, and this would further affect the sand erosion in elbows. Computational Fluid Dynamics (CFD) is an efficient tool to investigate the issues of sand erosion in multiphase flow. In the present work, a CFD-based numerical model is adopted to analyze the effects of bend orientation on sand erosion in elbows for annular flow. Volume of Fluid (VOF) method is adopted to simulate the flow field of annular flow, and sand particles in the flow field are tracked by employing Discrete Particle Model (DPM) simultaneously. Then, the particle impingement information is combined with the erosion model to obtain the maximum erosion ratio. The present numerical model is validated by experiments conducted in vertical-horizontal upward elbows. Finally, the effects of various bend orientations on the erosion magnitude are investigated according to the numerical simulations.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Brenton S. McLaury ◽  
Siamack A. Shirazi ◽  
Vinod Viswanathan ◽  
Quamrul H. Mazumder ◽  
Gerardo Santos

Predicting erosion resulting from the impact of solid particles such as sand is a difficult task, since it is dependent on so many factors. The difficulty is compounded if the particles are entrained in multiphase flow. Researchers have developed models to predict erosion resulting from solid particles in multiphase flow that account for a variety of factors. However, no model currently accounts for the flow orientation on the severity of erosion. This work provides three sets of experimental results that demonstrate pipe orientation can have a significant impact on the amount of erosion for annular flow. A semimechanistic model to predict erosion in annular flow is also outlined that accounts for the upstream flow orientation.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Ri Zhang ◽  
Feng Zhang ◽  
Sheng Dong

The phase distribution and mechanical properties of annular flow have obvious, random characteristics because of the influence of turbulence. Thus, probability analysis is a suitable method for the study of annular flow. In the present work, the interchange rate and pressure gradient of fully developed annular flow are investigated in detail based on a probability model. The probability model tracks the atomization and deposition processes of a single particle to analyze the momentum and mass exchange between the gas and liquid phases. The interchange rate can be calculated by summing the generation or disappearance probability of droplets with different sizes. The pressure gradient can be obtained by solving the basic equations of the annular flow, which contains an improved relationship of interfacial shear stress. The predictions of the interchange rate and pressure gradient are well verified by comparison with experimental data available in the literature. Furthermore, the effects of the gas and liquid flow rates on the interchange rate and pressure gradient are discussed in detail.


2017 ◽  
Vol 320 ◽  
pp. 625-636 ◽  
Author(s):  
Ronald E. Vieira ◽  
Mazdak Parsi ◽  
Peyman Zahedi ◽  
Brenton S. McLaury ◽  
Siamack A. Shirazi

Sign in / Sign up

Export Citation Format

Share Document