scholarly journals Estrogen depletion alters osteogenic differentiation and matrix production by osteoblasts in vitro

2021 ◽  
Vol 408 (1) ◽  
pp. 112814
Author(s):  
J. Schiavi ◽  
D.M. Fodera ◽  
M.A. Brennan ◽  
L.M. McNamara
Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 339
Author(s):  
Tobias Grossner ◽  
Uwe Haberkorn ◽  
Tobias Gotterbarm

First-line analgetic medication used in the field of musculoskeletal degenerative diseases, like Nonsteroidal anti-inflammatory drugs (NSAIDs), reduces pain and prostaglandin synthesis, whereby peptic ulcers are a severe adverse effect. Therefore, proton pump inhibitors (PPI) are frequently used as a concomitant medication to reduce this risk. However, the impact of NSAIDs or metamizole, in combination with PPIs, on bone metabolism is still unclear. Therefore, human mesenchymal stem cells (hMSCs) were cultured in monolayer cultures in 10 different groups for 21 days. New bone formation was induced as follows: Group 1 negative control group, group 2 osteogenic differentiation media (OSM), group 3 OSM with pantoprazole (PAN), group 4 OSM with ibuprofen (IBU), group 5 OSM with diclofenac (DIC), group 6 OSM with metamizole (MET), group 7 OSM with ibuprofen and pantoprazole (IBU + PAN), group 8 OSM with diclofenac and pantoprazole (DIC + PAN), group 9 OSM with metamizole and pantoprazole (MET + PAN) and group 10 OSM with diclofenac, metamizole and pantoprazole (DIC + MET + PAN). Hydroxyapatite content was evaluated using high-sensitive radioactive 99mTc-HDP labeling. Within this study, no evidence was found that the common analgetic medication, using NSAIDs alone or in combination with pantoprazole and/or metamizole, has any negative impact on the osteogenic differentiation of mesenchymal stem cells in vitro. To the contrary, the statistical results indicate that pantoprazole alone (group 3 (PAN) (p = 0.016)) or diclofenac alone (group 5 (DIC) (p = 0.008)) enhances the deposition of minerals by hMSCS in vitro. There is an ongoing discussion between clinicians in the field of orthopaedics and traumatology as to whether post-surgical (pain) medication has a negative impact on bone healing. This is the first hMSC in vitro study that investigates the effects of pain medication in combination with PPIs on bone metabolism. Our in vitro data indicates that the assumed negative impact on bone metabolism is subsidiary. These findings substantiate the thesis that, in clinical medicine, the patient can receive every pain medication needed, whether or not in combination with PPIs, without any negative effects for the osteo-regenerative potential.


2021 ◽  
Vol 22 (13) ◽  
pp. 6663
Author(s):  
Maurycy Jankowski ◽  
Mariusz Kaczmarek ◽  
Grzegorz Wąsiatycz ◽  
Claudia Dompe ◽  
Paul Mozdziak ◽  
...  

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells’ application in regenerative medicine.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ping Zhou ◽  
Jia-Min Shi ◽  
Jing-E Song ◽  
Yu Han ◽  
Hong-Jiao Li ◽  
...  

Abstract Background Derivation of osteoblast-like cells from human pluripotent stem cells (hPSCs) is a popular topic in bone tissue engineering. Although many improvements have been achieved, the low induction efficiency because of spontaneous differentiation hampers their applications. To solve this problem, a detailed understanding of the osteogenic differentiation process of hPSCs is urgently needed. Methods Monolayer cultured human embryonic stem cells and human-induced pluripotent stem cells were differentiated in commonly applied serum-containing osteogenic medium for 35 days. In addition to traditional assays such as cell viability detection, reverse transcription-polymerase chain reaction, immunofluorescence, and alizarin red staining, we also applied studies of cell counting, cell telomerase activity, and flow cytometry as essential indicators to analyse the cell type changes in each week. Results The population of differentiated cells was quite heterogeneous throughout the 35 days of induction. Then, cell telomerase activity and cell cycle analyses have value in evaluating the cell type and tumourigenicity of the obtained cells. Finally, a dynamic map was made to integrate the analysis of these results during osteogenic differentiation of hPSCs, and the cell types at defined stages were concluded. Conclusions Our results lay the foundation to improve the in vitro osteogenic differentiation efficiency of hPSCs by supplementing with functional compounds at the desired stage, and then establishing a stepwise induction system in the future.


Biomedicines ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 61 ◽  
Author(s):  
Jessika Bertacchini ◽  
Maria Magaro’ ◽  
Francesco Poti’ ◽  
Carla Palumbo

2021 ◽  
Vol 22 (2) ◽  
pp. 475
Author(s):  
Parastoo Memarian ◽  
Francesco Sartor ◽  
Enrico Bernardo ◽  
Hamada Elsayed ◽  
Batur Ercan ◽  
...  

Carbon enriched bioceramic (C-Bio) scaffolds have recently shown exceptional results in terms of their biological and mechanical properties. The present study aims at assessing the ability of the C-Bio scaffolds to affect the commitment of canine adipose-derived mesenchymal stem cells (cAD-MSCs) and investigating the influence of carbon on cell proliferation and osteogenic differentiation of cAD-MSCs in vitro. The commitment of cAD-MSCs to an osteoblastic phenotype has been evaluated by expression of several osteogenic markers using real-time PCR. Biocompatibility analyses through 3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH) activity, hemolysis assay, and Ames test demonstrated excellent biocompatibility of both materials. A significant increase in the extracellular alkaline phosphatase (ALP) activity and expression of runt-related transcription factor (RUNX), ALP, osterix (OSX), and receptor activator of nuclear factor kappa-Β ligand (RANKL) genes was observed in C-Bio scaffolds compared to those without carbon (Bio). Scanning electron microscopy (SEM) demonstrated excellent cell attachment on both material surfaces; however, the cellular layer on C-Bio fibers exhibited an apparent secretome activity. Based on our findings, graphene can improve cell adhesion, growth, and osteogenic differentiation of cAD-MSCs in vitro. This study proposed carbon as an additive for a novel three-dimensional (3D)-printable biocompatible scaffold which could become the key structural material for bone tissue reconstruction.


2004 ◽  
Vol 5 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Johnna S. Temenoff ◽  
Hansoo Park ◽  
Esmaiel Jabbari ◽  
Daniel E. Conway ◽  
Tiffany L. Sheffield ◽  
...  

Author(s):  
Mariane Beatriz Sordi ◽  
Raissa Borges Curtarelli ◽  
Izabella Thaís da Silva ◽  
Gislaine Fongaro ◽  
Cesar Augusto Magalhães Benfatti ◽  
...  

AbstractIn in vitro culture systems, dexamethasone (DEX) has been applied with ascorbic acid (ASC) and β-glycerophosphate (βGLY) as culture media supplementation to induce osteogenic differentiation of mesenchymal stem cells. However, there are some inconsistencies regarding the role of DEX as osteogenic media supplementation. Therefore, this study verified the influence of DEX culture media supplementation on the osteogenic differentiation, especially the capacity to mineralize the extracellular matrix of stem cells from human exfoliated deciduous teeth (SHED). Five groups were established: G1—SHED + Dulbecco’s Modified Eagles’ Medium (DMEM) + fetal bovine serum (FBS); G2—SHED + DMEM + FBS + DEX; G3—SHED + DMEM + FBS + ASC + βGLY; G4—SHED + DMEM + FBS + ASC + βGLY + DEX; G5—MC3T3-E1 + α Minimal Essential Medium (MEM) + FBS + ASC + βGLY. DNA content, alkaline phosphatase (ALP) activity, free calcium quantification in the extracellular medium, and extracellular matrix mineralization quantification through staining with von Kossa, alizarin red, and tetracycline were performed on days 7 and 21. Osteogenic media supplemented with ASC and β-GLY demonstrated similar effects on SHED in the presence or absence of DEX for DNA content (day 21) and capacity to mineralize the extracellular matrix according to alizarin red and tetracycline quantifications (day 21). In addition, the presence of DEX in the osteogenic medium promoted less ALP activity (day 7) and extracellular matrix mineralization according to the von Kossa assay (day 21), and more free calcium quantification at extracellular medium (day 21). In summary, the presence of DEX in the osteogenic media supplementation did not interfere with SHED commitment into mineral matrix depositor cells. We suggest that DEX may be omitted from culture media supplementation for SHED osteogenic differentiation in vitro studies.


Sign in / Sign up

Export Citation Format

Share Document