scholarly journals Effect of dexamethasone as osteogenic supplementation in in vitro osteogenic differentiation of stem cells from human exfoliated deciduous teeth

Author(s):  
Mariane Beatriz Sordi ◽  
Raissa Borges Curtarelli ◽  
Izabella Thaís da Silva ◽  
Gislaine Fongaro ◽  
Cesar Augusto Magalhães Benfatti ◽  
...  

AbstractIn in vitro culture systems, dexamethasone (DEX) has been applied with ascorbic acid (ASC) and β-glycerophosphate (βGLY) as culture media supplementation to induce osteogenic differentiation of mesenchymal stem cells. However, there are some inconsistencies regarding the role of DEX as osteogenic media supplementation. Therefore, this study verified the influence of DEX culture media supplementation on the osteogenic differentiation, especially the capacity to mineralize the extracellular matrix of stem cells from human exfoliated deciduous teeth (SHED). Five groups were established: G1—SHED + Dulbecco’s Modified Eagles’ Medium (DMEM) + fetal bovine serum (FBS); G2—SHED + DMEM + FBS + DEX; G3—SHED + DMEM + FBS + ASC + βGLY; G4—SHED + DMEM + FBS + ASC + βGLY + DEX; G5—MC3T3-E1 + α Minimal Essential Medium (MEM) + FBS + ASC + βGLY. DNA content, alkaline phosphatase (ALP) activity, free calcium quantification in the extracellular medium, and extracellular matrix mineralization quantification through staining with von Kossa, alizarin red, and tetracycline were performed on days 7 and 21. Osteogenic media supplemented with ASC and β-GLY demonstrated similar effects on SHED in the presence or absence of DEX for DNA content (day 21) and capacity to mineralize the extracellular matrix according to alizarin red and tetracycline quantifications (day 21). In addition, the presence of DEX in the osteogenic medium promoted less ALP activity (day 7) and extracellular matrix mineralization according to the von Kossa assay (day 21), and more free calcium quantification at extracellular medium (day 21). In summary, the presence of DEX in the osteogenic media supplementation did not interfere with SHED commitment into mineral matrix depositor cells. We suggest that DEX may be omitted from culture media supplementation for SHED osteogenic differentiation in vitro studies.

2014 ◽  
Vol 8 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Jafar Ai ◽  
Ebrahim Azizi ◽  
Azam Shamsian ◽  
Akram Eslami ◽  
Ahad Khoshzaban ◽  
...  

Abstract Background: Human endometrial-derived stem cells (hEnSCs) as multipotent accessible source of cells are known as useful cell candidates in the field of bone tissue engineering. However, the effect of bone morphogenic protein-2 (BMP-2) as an osteoinductive growth factor has not been clearly ascertained. Objective: To evaluate the effect of the remarkable osteoinductive growth factor BMP-2, on promotion of osteogenic differentiation in hEnSCs. Methods: Endometrial biopsies were obtained from healthy women referred to the hospital for infertility treatment. After tissue digestion in collagenase, the isolated endometrial cells were expanded in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% FBS. The propagated cells were characterized based on the expression of endometrial (CD90, CD105), endothelial (CD31), and hematopoietic (CD34, CD133) stem cell markers. Cells were differentiated in osteogenic medium containing DMEM supplemented with 10% FBS, 10 nM dexamethasone, 50 μg/ml Ascorbic acid, and 10 mM β-glycerophosphate in the presence or absence of BMP-2 for 21 days. Alizarin red staining was performed to verify the matrix mineralization. Immunocytochemical staining was conducted to detect the expression of OCT-4, CD133, and osteopontin as well as osteocalcin. The expression of osteoblast transcripts, including osteopontin, osteonectin, and alkaline phosphatase (ALP) were analyzed by semi quantitative PCR. Results: The expanded EnSCs were spindle shaped. They were positive for the expression of Oct-4, CD90, and CD105, while they were negative for endothelial and hematopoietic markers. The matrix mineralization was confirmed by Alizarin red in both groups at day 21. Although the expression of osteopontin and osteocalcin was detected in both groups by immunological staining, the expression of osteocalcin was more intense in the presence of BMP-2. ALP, Osteonectin and osteopontin transcripts were expressed in all groups; however, the expression of ALP and osteopontin was upregulated in the presence of BMP-2. Conclusion: BMP-2 as an osteoinductive growth factor, could promote the osteogenic differentiation of EnSCs in vitro.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ping Zhou ◽  
Jia-Min Shi ◽  
Jing-E Song ◽  
Yu Han ◽  
Hong-Jiao Li ◽  
...  

Abstract Background Derivation of osteoblast-like cells from human pluripotent stem cells (hPSCs) is a popular topic in bone tissue engineering. Although many improvements have been achieved, the low induction efficiency because of spontaneous differentiation hampers their applications. To solve this problem, a detailed understanding of the osteogenic differentiation process of hPSCs is urgently needed. Methods Monolayer cultured human embryonic stem cells and human-induced pluripotent stem cells were differentiated in commonly applied serum-containing osteogenic medium for 35 days. In addition to traditional assays such as cell viability detection, reverse transcription-polymerase chain reaction, immunofluorescence, and alizarin red staining, we also applied studies of cell counting, cell telomerase activity, and flow cytometry as essential indicators to analyse the cell type changes in each week. Results The population of differentiated cells was quite heterogeneous throughout the 35 days of induction. Then, cell telomerase activity and cell cycle analyses have value in evaluating the cell type and tumourigenicity of the obtained cells. Finally, a dynamic map was made to integrate the analysis of these results during osteogenic differentiation of hPSCs, and the cell types at defined stages were concluded. Conclusions Our results lay the foundation to improve the in vitro osteogenic differentiation efficiency of hPSCs by supplementing with functional compounds at the desired stage, and then establishing a stepwise induction system in the future.


2020 ◽  
Author(s):  
Xuedan Zhao ◽  
Wenyan Huang ◽  
Janak L Pathak ◽  
Chuandong Zhu ◽  
Yunyang Li ◽  
...  

Abstract Stem cells from human exfoliated deciduous teeth (SHEDs) are ideal seed cells in bone tissue engineering. As a first-line anti-diabetic drug, metformin has recently been found to promote bone formation. The purpose of this study was to investigate the effect of metformin on osteogenic differentiation of SHEDs and its underlying mechanism. SHEDs were isolated from the dental pulp of deciduous teeth from healthy children aged from 6 to 12, and their surface antigen markers of stem cells were detected by flow cytometry. The effect of metformin (10 - 200 μM) treatment on SHEDs cell viability, proliferation, and osteogenic differentiation was analyzed. The activation of adenosine 5'-monophosphate-activated protein kinase (AMPK) was determined by western blot assay for the AMPK phosphorylated at Thr172 (p-AMPK). SHEDs were confirmed as mesenchymal stem cells (MSCs) based on the expression of characteristic surface antigens. Metformin (10-200 μM) did not affect the viability and proliferation of SHEDs, but significantly increased the expression of osteogenic genes, the activity of alkaline phosphatase, matrix mineralization, and p-AMPK level in SHEDs. Compound C, a specific inhibitor of AMPK pathway, abolished metformin-induced osteogenic differentiation of SHEDs. Moreover, metformin treatment enhanced pro-angiogenic/osteogenic growth factors BMP2 and VEGF but reduced the osteoclastogenic factor RANKL/OPG expression in SHEDs. In conclusion, metformin could induce the osteogenic differentiation of SHEDs by activating the AMPK pathway and regulates the expression of pro-angiogenic/osteogenic growth factors and osteoclastogenic factors in SHEDs. Therefore, SHEDs, combined with metformin possesses therapeutic potential for bone regeneration and bone defect repair.


Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 370
Author(s):  
Alessio Rochira ◽  
Luisa Siculella ◽  
Fabrizio Damiano ◽  
Andrea Palermo ◽  
Franco Ferrante ◽  
...  

Bone regeneration is a complex process regulated by several factors that control overlapping biological processes, coordinating interactions among distinct cell populations. There is a great interest in identifying new strategies for inducing osteogenesis in a safe and efficient manner. Concentrated Growth Factor (CGF) is an autologous blood derived product obtained by centrifugation of venous blood following the procedure set on the Silfradent device. In this study the effects of CGF on osteogenic differentiation of human Bone Marrow Stem Cells (hBMSC) in vitro have been investigated; hBMSC were cultured with CGF or osteogenic medium, for 21 days. The osteogenic differentiation was evaluated measuring alkaline phosphatase (ALP) enzyme activity, matrix mineralization by alizarin red staining and through mRNA and protein quantification of osteogenic differentiation markers by Real-time PCR and Western blotting, respectively. The treatment with CGF stimulated ALP activity and promoted matrix mineralization compared to control and seems to be more effective than osteogenic medium. Also, hBMSC lost mesenchymal markers and showed other osteogenic features. Our study showed for the first time that CGF alone is able to induce osteogenic differentiation in hBMSC. The application of CGF on hBMSC osteoinduction might offer new clinical and biotechnological strategies in the tissue regeneration field.


2008 ◽  
Vol 41 (01) ◽  
pp. 08-14 ◽  
Author(s):  
Arash Zaminy ◽  
Iraj Ragerdi Kashani ◽  
Mohammad Barbarestani ◽  
Azim Hedayatpour ◽  
Reza Mahmoudi ◽  
...  

ABSTRACT Background: Osteogenesis driven by adipose-derived stem cells (ADSCs) is regulated by physiological and pathological factors. Accumulating evidence from in vitro and in vivo experiments suggests that melatonin may have an influence on bone formation. However, little is known about the effects of melatonin on osteogenesis, which thus remains to be elucidated. This study was performed to determine whether melatonin at physiological concentrations (0.01-10 nM) could affect the in vitro proliferation and osteogenic differentiation of rat ADSCs.Materials and Methods: ADSCs were isolated from the fat of adult rats. After cell expansion in culture media and through three passages, osteogenesis was induced in a monolayer culture using osteogenic medium with or without melatonin at physiological concentrations (0.01-10 nM). After four weeks, the cultures were examined for mineralization by Alizarin Red S and von Kossa staining and for alkaline phosphatase (ALP) activity using an ALP kit. Cell viability and apoptosis were also assayed by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTT) assay and flow cytometry, respectively.Results: The results indicated that at physiological concentrations, melatonin suppressed proliferation and differentiation of ADSCs. These data indicate that ADSCs exposed to melatonin, had a lower ALP activity in contrast to the cells exposed to osteogenic medium alone. Similarly, mineral deposition (calcium level) also decreased in the presence of melatonin. Flow cytometry confirmed that cell growth had decreased and that the numbers of apoptotic cells had increased.Conclusion: These results suggest that the physiological concentration of melatonin has a negative effect on ADSC osteogenesis.


Author(s):  
Bo Jia ◽  
Jun Chen ◽  
Qin Wang ◽  
Xiang Sun ◽  
Jiusong Han ◽  
...  

BackgroundAdipose-derived stem cells (ADSCs) are increasingly used in regenerative medicine because of their potential to differentiate into multiple cell types, including osteogenic lineages. Sirtuin protein 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that plays important roles in cell differentiation. NOTCH signaling has also been reported to involve in osteogenic differentiation. However, the function of SIRT6 in osteogenic differentiation of ADSCs and its relation to the NOTCH signaling pathways are yet to be explored.MethodsThe in vitro study with human ADSCs (hADSCs) and in vivo experiments with nude mice have been performed. Alkaline phosphatase (ALP) assays and ALP staining were used to detect osteogenic activity. Alizarin Red staining was performed to detect calcium deposition induced by osteogenic differentiation of ADSCs. Western blot, RT-qPCR, luciferase reporter assay, and co-immunoprecipitation assay were applied to explore the relationship between of SIRT6, DNA methyltransferases (DNMTs) and NOTCHs.ResultsSIRT6 promoted ALP activity, enhanced mineralization and upregulated expression of osteogenic-related genes of hADSCs in vitro and in vivo. Further mechanistic studies showed that SIRT6 deacetylated DNMT1, leading to its unstability at protein level. The decreased expression of DNMT1 prevented the abnormal DNA methylation of NOTCH1 and NOTCH2, resulting in the upregulation of their transcription. SIRT6 overexpression partially suppressed the abnormal DNA methylation of NOTCH1 and NOTCH2 by antagonizing DNMT1, leading to an increased capacity of ADSCs for their osteogenic differentiation.ConclusionThis study demonstrates that SIRT6 physical interacts with the DNMT1 protein, deacetylating and destabilizing DNMT1 protein, leading to the activation of NOTCH1 and NOTCH2, Which in turn promotes the osteogenic differentiation of ADSCs.


2008 ◽  
Vol 20 (1) ◽  
pp. 223
Author(s):  
A. Lima ◽  
E. Monaco ◽  
S. Wilson ◽  
D. Kim ◽  
C. Feltrin ◽  
...  

The quantity and accessibility of subcutaneous adipose tissue in humans make it an attractive alternative to bone marrow as a source of adult stem cells for therapeutic purposes. However, before such a cell source substitution can be proposed, the properties of stem cells derived from adipose (ADSCs) and bone marrow (MSCs) and their differentiated progeny must be compared in an animal model that adequately simulates the structure and physiology of humans. The objective of this work was to induce adult porcine stem cells isolated from subcutaneous adipose tissue and bone marrow to differentiate in vitro along the osteoblastic lineage and to compare their morphological, phenotypic, and genotypic properties. MSCs and ADSCs were isolated respectively from femurs and subcutaneous adipose tissue of adult pigs and cultured in vitro using DMEM supplemented with 10% fetal bovine serum (FBS), 1% penicillin G-streptomycin, and 5.6 mg L–1 amphotericin B. After 3 passages, cells were differentiated along the osteogenic lineage using lineage-specific inducing medium. Osteogenic medium contained 100 nm dexamethasone, 10 mm β-glycerophosphate, and 0.005 mm ascorbic acid-2-phosphate. Osteogenic cultures were incubated for 4 weeks in 95% air and 5% CO2 at 39�C. Spent medium was replaced with fresh medium every 3 days. Histological staining with alkaline phosphatase, Von Kossa, and alizarin red S were performed at 0, 2, 4, 7, 14, 21, and 28 days of differentiation (dd). At the same time points, RNA was extracted. qPCR was performed on COL1A1, BGLAP, SPARC, and SPP1. As internal control, the geometrical mean of GTF2H, NUBP, and PPP2C was used. Relative mRNA abundance between cell types was calculated using 1/efficiencydCT. The osteogenic differentiation of both MSCs and ADScs was confirmed by the organization of the cells in nodules and by alkaline phosphatase-, Von Kossa-, and alizarin red S-positive staining. The percent relative abundance of the 4 genes in both cell types was COL1A1 (ca. 50) > SPARC (ca. 45) > SPP1 (ca. 5) > BGLAP ( < 0.1). Cell types showed similar mRNA abundance for COL1A1 and SPARC while SPP1 and BGLAP were, respectively, 10- and 19-fold higher in MSCs than in ADSCs. All of the genes had the same pattern among tissues during differentiation except for SPP1, which showed a >10-fold increase at 14 v. 0 dd only for MSCs. Adipose-derived stem cells demonstrated a clear osteogenic differentiation and similar expression and pattern of the two osteogenic genes most abundant in MSCs (COL1A1 and SPARC). However, the higher abundance of SPP1 and BGLAP and the different behavior of SPP1 in MSCs suggest a different transcription profile between the two cell types. From these preliminary results, adipose tissue can be a practical alternative source for stem cells in future human clinical applications.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1894-1894
Author(s):  
Song Xu ◽  
Jinsong Hu ◽  
Dehui Xu ◽  
Isabelle Vande Broek ◽  
Xavier Leleu ◽  
...  

Abstract Abstract 1894 Mesenchymal stem cells (MSCs) give rise to bone marrow (BM) stromal cells and play an essential role in the formation and function of the MM microenvironment. Some recent studies revealed that MSCs from myeloma patients (MM-hMSCs) show an enhanced spontaneous and myeloma cell-induced production of cytokines and a distinctive gene expression profile, when compared to MSCs from normal donors (ND-hMSCs). However, regarding the osteogenic differentiation ability of MM-hMSCs conflicting observations were reported. In this study, we observed that MM-hMSCs, especially for those from MM patients with bone lesions, exhibited in the presence of osteogenic differentiation (OD) medium, significantly decreased alkaline phosphatase (ALP) activity, reduced expression of specific osteogenic markers (OPN, BMP2, OTX and BSP) and impaired matrix mineralization, compared to ND-hMSCs. However, MGUS-hMSCs, did not show a significantly impaired osteogenesis ability. Primary CFU-ALP assay from BM samples of diseased mice in the 5T33MM model also confirmed that the osteogenic differentiation ability of MSCs was impaired. Previous reports indicated that MM cells can suppress MSCs osteogenesis by HGF and DKK1 as observed in vitro (Giuliani et al, Cancer Res. 2007; Standal et al, Blood. 2007). Since MM-hMSCs have been cultured in vitro for several weeks and without any stimulation of MM cells, we believe that the impaired osteogenic differentiation of MM-hMSCs was due to an intrinsic abnormality. Several reports suggested that NOTCH signalling can maintain bone marrow mesenchymal progenitors in a more undifferentiated state by suppressing osteoblast differentiation (Hilton et al, Nat Med. 2008; Zanotti et al, Endocrinology. 2008). Therefore, we postulate that impaired osteogenic ability of MM-hMSCs might be (at least partly) related to abnormal NOTCH activity during osteogenesis. We found by quantitative real time PCR that NOTCH1, NOTCH2, Dll-1, Jagged-1, and NOTCH pathway downstream genes hes1, hey1, hey2, heyL were considerably decreased in ND-hMSCs after shifting them from normal culture medium to OD medium, indicating that NOTCH signalling was gradually suppressed during MSC osteogenesis. However, it was observed that the expression of NOTCH1, Jagged-1, Hes1 and Hes5 in MM-hMSCs did not decrease to the level of ND-hMSC with statistical difference. This implicates that the NOTCH signaling pathway remains in MM-hMSCs over-activated even in the presence of osteogenesis inducing signals. When the NOTCH signalling inhibitor DAPT was added to MM-hMSCs in OD medium, we found that hes1 expression was suppressed while, RUNX2 expression, a key transcription factor for osteoblastogenesis, as well as ALP activity, osteogenic genes expression and mineralization deposition were all increased. In conclusion our data indicate that MM-hMSCs exhibit in vitro lower osteogenic differentiation ability compared to ND-hMSCs, and that this impairement is associated with an inappropriate NOTCH pathway deactivation during the osteogenesis process. Targeting hMSCs in vivo by NOTCH inhibitors might have therapeutical potential to control bone disease in MM patients. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 316 (1) ◽  
pp. C57-C69 ◽  
Author(s):  
Zihui Zhou ◽  
Yuanshan Lu ◽  
Yao Wang ◽  
Lin Du ◽  
Yunpeng Zhang ◽  
...  

Osteoporosis is a progressive bone disease characterized by decreased bone mass and density, which usually parallels a reduced antioxidative capacity and increased reactive oxygen species formation. Adipose-derived mesenchymal stem cells (ADMSCs), a population of self-renewing multipotent cells, are a well-recognized source of potential bone precursors with significant clinical potential for tissue regeneration. We previously showed that overexpressing stearoyl-CoA desaturase 1 (SCD-1) promotes osteogenic differentiation of mesenchymal stem cells. Micro-RNAs (miRNAs) are noncoding RNAs recently recognized to play key roles in many developmental processes, and miRNA let-7c is downregulated during osteoinduction. We found that let-7c was upregulated in the serum of patients with postmenopausal osteoporosis compared with healthy controls. Levels of let-7c during osteogenic differentiation of ADMSCs were examined under oxidative stress in vitro and found to be upregulated. Overexpression of let-7c inhibited osteogenic differentiation, whereas inhibition of let-7c function promoted this process, evidenced by increased expression of osteoblast-specific genes, alkaline phosphatase activity, and matrix mineralization. The luciferase reporter assay was used to validate SCD-1 as a target of let-7c. Further experiments showed that silencing of SCD-1 significantly attenuated the effect of let-7c inhibitor on osteoblast markers, providing strong evidence that let-7c modulates osteogenic differentiation by targeting SCD-1. Inhibition of let-7c promoted the translocation of β-catenin into nuclei, thus activating Wnt/β-catenin signaling. Collectively, these data suggest that let-7c is induced under oxidative stress conditions and in osteoporosis, reducing SCD-1 protein levels, switching off Wnt/β-catenin signaling, and inhibiting osteogenic differentiation. Thus, let-7c may be a potential therapeutic target in the treatment of osteoporosis and especially postmenopausal osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document