A possible mechanism contributing to the synergistic action of vasotocin (VT) and corticotropin-releasing hormone (CRH) receptors on corticosterone release in birds

2013 ◽  
Vol 188 ◽  
pp. 46-53 ◽  
Author(s):  
Lawrence E. Cornett ◽  
Seong W. Kang ◽  
Wayne J. Kuenzel
2005 ◽  
Vol 153 (3) ◽  
pp. R7-R10 ◽  
Author(s):  
A P Silva ◽  
P Schoeffter ◽  
G Weckbecker ◽  
C Bruns ◽  
H A Schmid

Objective: Adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome is biochemically characterized by increased plasma concentrations of ACTH inducing hypersecretion of cortisol. Somatostatin is known to inhibit ACTH secretion, and in vitro data have shown the inhibition of ACTH secretion by agonists activating sst2 and sst5 receptors. The present study aimed to determine the inhibitory effect of the multireceptor ligand SOM230, compared with the sst2-preferring agonist octreotide, on corticotropin-releasing hormone (CRH)-stimulated secretion of ACTH and corticosterone in rats. Methods: Secretion of ACTH and corticosterone was induced by i.v. application of CRH (0.5 μg/kg) in rats pretreated 1 h before by i.v. application of SOM230 (1, 3, or 10 μg/kg), octreotide (10 μg/kg) or NaCl 0.9%. Results: SOM230 (3 and 10 μg/kg) inhibited CRH-induced ACTH release by 45±3% and 51±2%, respectively, and corticosterone release by 43±5% and 27±16%, respectively. 10 μg/kg of octreotide tended to be less potent at inhibiting ACTH release (34±6% inhibition) and did not alter the secretion of corticosterone. Conclusion: SOM230 has a stronger inhibitory effect on ACTH and corticosterone secretion than octreotide in rats. This difference can be explained by its higher affinity to sst1, sst3 and especially sst5 receptors compared with octreotide.


2008 ◽  
Vol 42 (12) ◽  
pp. 995-1002 ◽  
Author(s):  
Maxwell R. Bennett Ao

Stress during childhood and adolescence has implications for the extent of depression and psychotic disorders in maturity. Stressful events lead to the regression of synapses with the loss of synaptic spines and in some cases whole dendrites of pyramidal neurons in the prefrontal cortex, a process that leads to the malfunctioning of neural networks in the neocortex. Such stress often shows concomitant increases in the activity of the hypothalamic–pituitary–adrenal system, with a consequent elevated release of glucocorticoids such as cortisol as well as of corticotropin-releasing hormone (CRH) from neurons. It is very likely that it is these hormones, acting on neuronal and astrocyte glucocorticoid receptors (GRs) and CRH receptors, respectively, that are responsible for the regression of synapses. The mechanism of such regression involves the loss of synaptic spines, the stability of which is under the direct control of the activity of N-methyl-d-aspartate (NMDA) receptors on the spines. Glutamate activates NMDA receptors, which then, through parallel pathways, control the extent in the spine of the cytoskeletal protein F-actin and so spine stability and growth. Both GR and CRH receptors in the spines can modulate NMDA receptors, reducing their activation by glutamate and hence spine stability. In contrast, glucocorticoids, probably acting on nerve terminal and astrocyte GRs, can release glutamate, so promoting NMDA receptor activation. It is suggested that spine stability is under dual control by glucocorticoids and CRH, released during stress to change the stability of synaptic spines, leading to the malfunctioning of cortical neural networks that are involved in depression and psychoses.


2011 ◽  
Vol 23 (6) ◽  
pp. 780 ◽  
Author(s):  
Magdalena Ciechanowska ◽  
Magdalena Łapot ◽  
Tadeusz Malewski ◽  
Krystyna Mateusiak ◽  
Tomasz Misztal ◽  
...  

There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo–pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo–anterior pituitary unit.


2017 ◽  
Vol 232 (3) ◽  
pp. R161-R172 ◽  
Author(s):  
Roman A Romanov ◽  
Alán Alpár ◽  
Tomas Hökfelt ◽  
Tibor Harkany

Hormonal responses to acute stress rely on the rapid induction of corticotropin-releasing hormone (CRH) production in the mammalian hypothalamus, with subsequent instructive steps culminating in corticosterone release at the periphery. Hypothalamic CRH neurons in the paraventricular nucleus of the hypothalamus are therefore considered as ‘stress neurons’. However, significant morphological and functional diversity among neurons that can transiently produce CRH in other hypothalamic nuclei has been proposed, particularly as histochemical and molecular biology evidence associates CRH to both GABA and glutamate neurotransmission. Here, we review recent advances through single-cell RNA sequencing and circuit mapping to suggest that CRH production reflects a state switch in hypothalamic neurons and thus confers functional competence rather than being an identity mark of phenotypically segregated neurons. We show that CRH mRNA transcripts can therefore be seen in GABAergic, glutamatergic and dopaminergic neuronal contingents in the hypothalamus. We then distinguish ‘stress neurons’ of the paraventricular nucleus that constitutively express secretagogin, a Ca2+ sensor critical for the stimulus-driven assembly of the molecular machinery underpinning the fast regulated exocytosis of CRH at the median eminence. Cumulatively, we infer that CRH neurons are functionally and molecularly more diverse than previously thought.


2006 ◽  
Vol 155 (suppl_1) ◽  
pp. S85-S91 ◽  
Author(s):  
E Zoumakis ◽  
D K Grammatopoulos ◽  
G P Chrousos

Corticotropin-releasing hormone (CRH), CRH-related peptides, and CRH receptors play major roles in coordinating the behavioral, endocrine, autonomic, and immune responses to stress. The wide influence of the CRH system on physiological processes in both brain and periphery implicates the respective peptides in the pathophysiology of numerous disorders characterized by dysregulated stress responses. The potential use of CRH antagonists is presently under intense investigation. Selective antagonists have been used experimentally to elucidate the role of CRH-related peptides in disease processes, such as anxiety and depression, sleep disorders, addictive behavior, inflammatory disorders, acute and chronic neurodegeneration, and preterm labor.


Sign in / Sign up

Export Citation Format

Share Document