scholarly journals Mixing and matching methylotrophic enzymes to design a novel methanol utilization pathway in E. coli

2020 ◽  
Vol 61 ◽  
pp. 315-325
Author(s):  
A. De Simone ◽  
C.M. Vicente ◽  
C. Peiro ◽  
L. Gales ◽  
F. Bellvert ◽  
...  
2004 ◽  
Vol 48 (12) ◽  
pp. 4532-4541 ◽  
Author(s):  
Elizabeta Sauer ◽  
Melisa Merdanovic ◽  
Anne Price Mortimer ◽  
Gerhard Bringmann ◽  
Joachim Reidl

ABSTRACT The utilization pathway for the uptake of NAD and nicotinamide riboside was previously characterized for Haemophilus influenzae. We now report on the cellular location, topology, and substrate specificity of PnuC. pnuC of H. influenzae is only distantly related to pnuC of Escherichia coli and Salmonella enterica serovar Typhimurium. When E. coli PnuC was expressed in an H. influenzae pnuC mutant, it was able to take up only nicotinamide riboside and not nicotinamide mononucleotide. Therefore, we postulated that PnuC transporters in general possess specificity for nicotinamide riboside. Earlier studies showed that 3-aminopyridine derivatives (e.g., 3-aminopyridine adenine dinucleotide) are inhibitory for H. influenzae growth. By testing characterized strains with mutations in the NAD utilization pathway, we show that 3-aminopyridine riboside is inhibitory to H. influenzae and is taken up by the NAD-processing and nicotinamide riboside route. 3-Aminopyridine riboside is utilized effectively in a pnuC+ background. In addition, we demonstrate that 3-aminopyridine adenine dinucleotide resynthesis is produced by NadR. 3-Aminopyridine riboside-resistant H. influenzae isolates were characterized, and mutations in nadR could be detected. We also tested other species of the family Pasteurellaceae, Pasteurella multocida and Actinobacillus actinomycetemcomitans, and found that 3-aminopyridine riboside does not act as a growth inhibitor; hence, 3-aminopyridine riboside represents an anti-infective agent with a very narrow host range.


2009 ◽  
Vol 191 (8) ◽  
pp. 2776-2782 ◽  
Author(s):  
Shin Kurihara ◽  
Yuichi Tsuboi ◽  
Shinpei Oda ◽  
Hyeon Guk Kim ◽  
Hidehiko Kumagai ◽  
...  

ABSTRACT The Puu pathway is a putrescine utilization pathway involving gamma-glutamyl intermediates. The genes encoding the enzymes of the Puu pathway form a gene cluster, the puu gene cluster, and puuP is one of the genes in this cluster. In Escherichia coli, three putrescine importers, PotFGHI, PotABCD, and PotE, were discovered in the 1990s and have been studied; however, PuuP had not been discovered previously. This paper shows that PuuP is a novel putrescine importer whose kinetic parameters are equivalent to those of the polyamine importers discovered previously. A puuP + strain absorbed up to 5 mM putrescine from the medium, but a ΔpuuP strain did not. E. coli strain MA261 has been used in previous studies of polyamine transporters, but PuuP had not been identified previously. It was revealed that the puuP gene of MA261 was inactivated by a point mutation. When E. coli was grown on minimal medium supplemented with putrescine as the sole carbon or nitrogen source, only PuuP among the polyamine importers was required. puuP was expressed strongly when putrescine was added to the medium or when the puuR gene, which encodes a putative repressor, was deleted. When E. coli was grown in M9-tryptone medium, PuuP was expressed mainly in the exponential growth phase, and PotFGHI was expressed independently of the growth phase.


2021 ◽  
Vol 12 ◽  
Author(s):  
R. Kyle Bennett ◽  
Gwendolyn J. Gregory ◽  
Jacqueline E. Gonzalez ◽  
Jie Ren Gerald Har ◽  
Maciek R. Antoniewicz ◽  
...  

There is great interest in developing synthetic methylotrophs that harbor methane and methanol utilization pathways in heterologous hosts such as Escherichia coli for industrial bioconversion of one-carbon compounds. While there are recent reports that describe the successful engineering of synthetic methylotrophs, additional efforts are required to achieve the robust methylotrophic phenotypes required for industrial realization. Here, we address an important issue of synthetic methylotrophy in E. coli: methanol toxicity. Both methanol, and its oxidation product, formaldehyde, are cytotoxic to cells. Methanol alters the fluidity and biological properties of cellular membranes while formaldehyde reacts readily with proteins and nucleic acids. Thus, efforts to enhance the methanol tolerance of synthetic methylotrophs are important. Here, adaptive laboratory evolution was performed to improve the methanol tolerance of several E. coli strains, both methylotrophic and non-methylotrophic. Serial batch passaging in rich medium containing toxic methanol concentrations yielded clones exhibiting improved methanol tolerance. In several cases, these evolved clones exhibited a > 50% improvement in growth rate and biomass yield in the presence of high methanol concentrations compared to the respective parental strains. Importantly, one evolved clone exhibited a two to threefold improvement in the methanol utilization phenotype, as determined via 13C-labeling, at non-toxic, industrially relevant methanol concentrations compared to the respective parental strain. Whole genome sequencing was performed to identify causative mutations contributing to methanol tolerance. Common mutations were identified in 30S ribosomal subunit proteins, which increased translational accuracy and provided insight into a novel methanol tolerance mechanism. This study addresses an important issue of synthetic methylotrophy in E. coli and provides insight as to how methanol toxicity can be alleviated via enhancing methanol tolerance. Coupled improvement of methanol tolerance and synthetic methanol utilization is an important advancement for the field of synthetic methylotrophy.


2012 ◽  
Vol 11 (1) ◽  
pp. 22 ◽  
Author(s):  
Florian W Krainer ◽  
Christian Dietzsch ◽  
Tanja Hajek ◽  
Christoph Herwig ◽  
Oliver Spadiut ◽  
...  

2020 ◽  
Author(s):  
Chunjun Zhan ◽  
Yingyue Pan ◽  
Xiuxia Liu ◽  
Chunli Liu ◽  
Jinling Zhan ◽  
...  

Abstract Background Methanol expression regulator 1 (Mxr1p) is a key transcription factor that plays a vital role in the methanol utilization pathway in Pichia pastoris ( P. pastoris ). Most genes referred to the methanol utilization pathway were regulated by Mxr1p. However, some genes did not show a significant difference between methanol and glycerol even though they play an important role in the methanol utilization pathway. So far, the regulation mechanism about these genes and the relationship with Mxr1p are still unknown. Results Methanol metabolic pathway analysis revealed that most of the methanol-induced genes were upregulated in transcriptional level when cultured in methanol. Whereas some genes like tkl1 (transketolase 1) did not show significant up-regulation in methanol even though it plays a very important role in Xu5P recycle, the reason is still not clear. To clarify this point, firstly, pull-down and MS experiments were performed. The result shows that Tkl1p protein combined with Mxr1p in vitro . Subsequently, this result was further confirmed by yeast two-hybrid in vivo , and the binding region mainly located from 150AA to 400AA. Moreover, Ser215 phosphorylation did not affect this interaction. In addition, Mxr1p-400AA integration into Δmxr1 could rescue cell growth in methanol. All the above results proved that Mxr1p played a post-translational role in the methanol utilization pathway and Mxr1p-400AA may achieved most of Mxr1p functions. Secondly, the function of Mxr1p-Tkl1p complex was expounded by detecting formaldehyde consumption and xylulose production in cell-free systems. Results showed that Mxr1p-Tkl1p mixture could promote formaldehyde consumption and xylulose production in vitro . Conclusion Mxr1p promotes methanol utilization via combining with Tkl1p to accelerate Xu5P recycle and this interaction was not affected by Ser215 phosphorylation.


2015 ◽  
Vol 4 (11) ◽  
pp. 1235-1243 ◽  
Author(s):  
Justin R. Klesmith ◽  
John-Paul Bacik ◽  
Ryszard Michalczyk ◽  
Timothy A. Whitehead

2020 ◽  
Author(s):  
Hong Liang ◽  
Xiaoqiang Ma ◽  
Wenbo Ning ◽  
Yurou Liu ◽  
Anthony J. Sinskey ◽  
...  

AbstractEngineering microbes to utilize non-conventional substrates could create short and efficient pathways to convert substrate into product. In this study, we designed and constructed a two-step heterologous ethanol utilization pathway (EUP) in Escherichia coli by using acetaldehyde dehydrogenase (encoded by ada) from Dickeya zeae and alcohol dehydrogenase (encoded by adh2) from Saccharomyces cerevisiae. This EUP can convert ethanol into acetyl-CoA without ATP consumption, and generate two molecules of NADH per molecule of ethanol. We optimized the expression of these two genes and found that ethanol consumption could be improved by expressing them in a specific order (ada-adh2) with a constitutive promoter (PgyrA). The engineered E. coli strain with EUP consumed approximately 8 g/L of ethanol in 96 hours when it was used as sole carbon source. Subsequently, we combined EUP with the biosynthesis of polyhydroxybutyrate (PHB), a biodegradable polymer derived from acetyl-CoA. The engineered E. coli strain carrying EUP and PHB biosynthetic pathway produced 1.1 g/L of PHB from 10 g/L of ethanol and 1 g/L of aspartate family amino acids in 96 hours. We also engineered E. coli strain to produced 24 mg/L of prenol from 10 g/L of ethanol in 48 hours, supporting the feasibility of converting ethanol into different classes of acetyl-CoA derived compounds.HighlightsEngineered Escherichia coli strains to grow on ethanol as sole carbon sourceDemonstrated that ethanol was converted into acetyl-CoA (AcCoA) through two pathways (acetaldehyde-acetate-AcCoA and acetaldehyde-AcCoA)Converted ethanol into two acetyl-CoA derived products with low structural similarity (polyhydroxybutyrate and prenol)Discovered that supplementation of the aspartate family amino acids can substantially improve cell growth on ethanol


Sign in / Sign up

Export Citation Format

Share Document