In situ wireless measurement of grinding force in silicon wafer self-rotating grinding process

2021 ◽  
Vol 154 ◽  
pp. 107550
Author(s):  
Fei Qin ◽  
Lixiang Zhang ◽  
Pei Chen ◽  
Tong An ◽  
Yanwei Dai ◽  
...  
2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2010 ◽  
Author(s):  
ByoungChang Kim ◽  
MinCheol Kwon ◽  
JaeBoong Ha ◽  
KangWoo Lee

2013 ◽  
Vol 797 ◽  
pp. 123-128
Author(s):  
Ming He Liu ◽  
Xiu Ming Zhang ◽  
Shi Chao Xiu

In the low-speed grinding process, the force generated when the wheel grinding the workpiece is the result of sliding friction, plough and cutting. While in the actual study, the cutting process has attracted extensive attention. Impact effect to the entire grinding process on the contact is ignored so that the error exists between the calculation grinding force and the measured grinding force. Basing on the shock effect to the grinding process, the paper divides the contact area into impact area and cutting area. And the model of impact load generated from single grit is built. Moreover, the grinding force theoretical calculation model and total grinding force mathematical model is also constructed by analyzing the impact load affecting on the grinding force mechanism. Finally experimental study verifies the correctness of theoretical analysis.


1989 ◽  
Vol 146 ◽  
Author(s):  
J. R. Hauser ◽  
N. A. Masnari ◽  
M. A. Littlejohn

ABSTRACTMultistep, in-situ single wafer processing is being explored as an alternative processing approach to standard batch silicon wafer processing. Advantages and disadvantages of this approach are explored and an evaluation given of the potential for future advanced, low temperature wafer processing. Multistep, single wafer processing offers many advantages for advanced device and IC development but much technology research and equipment development is needed to achieve its potential.


2010 ◽  
Vol 126-128 ◽  
pp. 361-366 ◽  
Author(s):  
Xiang Long Zhu ◽  
Ren Ke Kang ◽  
Yong Qing Wang ◽  
Dong Ming Guo

Grinding forces during grinding silicon wafer have great influences on the accuracy, surface quality and grinding yield of the wafer. It is necessary to develop an accurate and reliable grinding dynamometer for measuring and monitoring the grinding process of the large and thin wafer. In this work, a new 3D (three-dimensional) grinding dynamometer using piezoelectric sensors is designed and developed, which is used for a wafer grinder based on wafer rotating grinding method. The calibrating experiments of the 3D grinding dynamometer are carried out. The FEA and modal analysis are made and compared with the results of mode testing. Furthermore, the static performance parameters of the dynamometer are obtained from the loading experiment. The experiment results indicate that the 3D grinding dynamometer can measure axial, radial and tangential grinding force of grinding wheel with high sensitivity, good linearity, good repeatability and high natural frequency, and fully satisfied requirement for measuring and monitoring of the grinding force in wafer grinding process.


2019 ◽  
Vol 2 (2) ◽  
pp. 152-166
Author(s):  
A. Mahamani

Machining and conversion of aluminum matrix composites into a desired shape with accuracy has been a challenge for many years. Grinding is a process aimed at achieving better-quality surface finish along with reasonable rate of material removal. The present article describes the influence of operating parameters on the tangential grinding force, size effect, and surface integrity in the grinding of in situ aluminum matrix composites using various grinding wheels. The material removal mechanism of the in situ composite under different grinding conditions is established. Experimental results show that the grinding operating parameters have significant influence on the tangential grinding force, size effect, surface integrity, and material removal. Scanning electron and atomic force microscopy findings indicate presence of numerous surface defects on the grounded surface under all grinding conditions. Diamond grinding wheel outperformed the CBN and Al2O3 wheels by requiring lower grinding force and specific grinding energy and generating lower surface defects. Surface defects, including grinding striation, delamination, and ridge formation are unavoidable under all machining conditions. However, the aforementioned surface defects indicate the ductile mode of material removal at all experimental conditions. Undeformed chip thickness under various grinding conditions plays a significant role in material removal and surface generation. These findings help to understand the mechanism of material removal in machining of in situ composites under various grinding conditions, which helps in attaining the economic production rate without compromising the surface integrity.


Sign in / Sign up

Export Citation Format

Share Document