scholarly journals Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism

2022 ◽  
Vol 166 ◽  
pp. 108415
Author(s):  
Grzegorz Kudra ◽  
Jose M. Balthazar ◽  
Angelo M. Tusset ◽  
Grzegorz Wasilewski ◽  
Bartosz Stańczyk ◽  
...  
Author(s):  
Bo Li ◽  
Xiaoting Rui ◽  
Guoping Wang ◽  
Jianshu Zhang ◽  
Qinbo Zhou

Dynamics analysis is currently a key technique to fully understand the dynamic characteristics of sophisticated mechanical systems because it is a prerequisite for dynamic design and control studies. In this study, a dynamics analysis problem for a multiple launch rocket system (MLRS) is developed. We particularly focus on the deductions of equations governing the motion of the MLRS without rockets by using a transfer matrix method for multibody systems and the motion of rockets via the Newton–Euler method. By combining the two equations, the differential equations of the MLRS are obtained. The complete process of the rockets’ ignition, movement in the barrels, airborne flight, and landing is numerically simulated via the Monte Carlo stochastic method. An experiment is implemented to validate the proposed model and the corresponding numerical results.


2012 ◽  
Vol 487 ◽  
pp. 608-612 ◽  
Author(s):  
Chih Cheng Kao

This paper mainly proposes an efficient modified particle swarm optimization (MPSO) method, to identify a slider-crank mechanism driven by a field-oriented PM synchronous motor. The parameters of many industrial machines are difficult to obtain if these machines cannot be taken apart. In system identification, we adopt the MPSO method to find parameters of the slider-crank mechanism. This new algorithm is added with “distance” term in the traditional PSO’s fitness function to avoid converging to a local optimum. Finally, the comparisons of numerical simulations and experimental results prove that the MPSO identification method for the slider-crank mechanism is feasible.


Author(s):  
Muhammad Salman ◽  
Hamza Khan ◽  
Saad Jamshed Abbasi ◽  
Min Cheol Lee

2015 ◽  
Vol 809-810 ◽  
pp. 1145-1150 ◽  
Author(s):  
Maja Baier ◽  
Mateusz Dziewior ◽  
Jakub Franiasz ◽  
Michal Zuk

Thermal analysis of a DC motor cooling system and description of measurement system applied to an engine test stand are the main topics of the paper. The motor that is being tested comes from the electric vehicle of Silesian Greenpower project whose aim is to design and build energy efficient bolids in order to participate in international races in Great Britain. During the designing process of the car, minimizing energy losses and maximizing powertrain efficiency are the main aspects taken into consideration. One of the crucial issues to accomplish these goals is to maintain optimal performance of the motor by applying effective cooling. The engine test stand used in this research was designed especially for Silesian Greenpower vehicles. Thanks to its modular construction and versatility, it enables measuring many different parameters of the motor and powertrain. In this paper the thermal analysis is described as well as how the measuring system of the engine stand works. The thermal analysis described in the article occurred to be very helpful in improving the cooling system and motor performance in the same time. The advanced measuring and control system of the test stand enables conducting versatile analysis of the DC motor and the powertrain.


Author(s):  
Anup Kumar Kolya ◽  
Debasish Mondal ◽  
Alokesh Ghosh ◽  
Subhashree Basu

This paper presents the design and implementation of control strategy for both the speed and direction of a direct current (DC) motor using Android-based application in smart phone. The Raspberry Pi 3 with a motor driver controller has been used to implement the control action via Python-based user-defined programming. The Android application has been developed using Android Developer Tools (ADT) in Java platform. The Android apps work like a client and communicates with Raspberry Pi through wi-fi connectivity. Finally, a small graphical user interface (GUI) has been created in Python in order to interface and control the motor with buttons in GUI. The advantages of GUI are that it is attractive, user friendly, and even a layman can work with the application developed in GUI.


2021 ◽  
Author(s):  
Ivan Yu. Spitsyn ◽  
Aleksandr M. Sinitca ◽  
Vjacheslav V. Gulvanskii ◽  
Dmitrij A. Perevertailo ◽  
Aleksej V. Volkov

2013 ◽  
Vol 52 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Nong Zhang ◽  
Lifu Wang ◽  
Haiping Du

Sign in / Sign up

Export Citation Format

Share Document