Determinants of fire activity during the last 3500 yr at a wildland—urban interface, Alberta, Canada

2016 ◽  
Vol 86 (3) ◽  
pp. 247-259 ◽  
Author(s):  
Emma L. Davis ◽  
Colin J. Courtney Mustaphi ◽  
Amber Gall ◽  
Michael F.J. Pisaric ◽  
Jesse C. Vermaire ◽  
...  

AbstractLong-term records of wildfires and their controlling factors are important sources of information for informing land management practices. Here, dendrochronology and lake sediment analyses are used to develop a 3500-yr fire and vegetation history for a montane forest in Jasper National Park, Alberta, Canada. The tree-ring record (AD 1771-2012) indicates that this region historically experienced a mixed-severity fire regime, and that effective fire suppression excluded widespread fire events from the study area during the 20th century. A sediment core collected from Little Trefoil Lake, located near the Jasper townsite, is analyzed for subfossil pollen and macroscopic charcoal (>150 μm). When comparing the tree-ring record to the 3500-yr record of sediment-derived fire events, only high-severity fires are represented in the charcoal record. Comparisons between the charcoal record and historical climate and pollen data indicate that climate and vegetation composition have been important controls on the fire regime for most of the last 3500 yr. Although fire frequency is presently within the historical range of variability, the fire return interval of the last 150 yr is longer than expected given modern climate and vegetation conditions, indicating that humans have become the main control on fire activity around Little Trefoil Lake.

2019 ◽  
pp. 1034-1048
Author(s):  
John Isaac Molefe

Despite its role and relevance in environmental management at all scales the use of fire has been contentious. The absence of information on fire parameters compounds the situation. This study derives fire parameter information for Botswana by analyzing MODIS fire data for (2001-2012), using conditional statements, and cluster mapping in ArcGIS. The study also related the fire information to other variables to examine how they interact with fire. The results of the study indicates that over the 12 year period the burned area has exhibited an upward trend. It has also shown that most of the fire in the country occur over the late dry season when the fires are potentially destructive. A south-north transect of fire frequency is observed, accompanied by an inverse relationship between frequency and intensity. Of all the factors, rainfall (0.638) and biomass(NDVI) (0.355) were the most significant contributors to the fire activity. The study demonstrated the utility of the MODIS fire data in characterizing the fire regime of the country and thus contribute to the policy process.


2007 ◽  
Vol 13 (3) ◽  
pp. 177 ◽  
Author(s):  
Owen Price ◽  
Bryan Baker

A nine year fire history for the Darwin region was created from Landsat imagery, and examined to describe the fire regime across the region. 43% of the region burned each year, and approximately one quarter of the fires occur in the late dry season, which is lower than most other studied areas. Freehold land, which covers 35% of the greater Darwin region, has 20% long-unburnt land. In contrast, most publicly owned and Aboriginal owned land has very high fire frequency (60-70% per year), and only 5% long unburnt. It seems that much of the Freehold land is managed for fire suppression, while the common land is burnt either to protect the Freehold or by pyromaniacs. Generalized Linear Modelling among a random sample of points revealed that fire frequency is higher among large blocks of savannah vegetation, and at greater distances from mangrove vegetation and roads. This suggests that various kinds of fire break can be used to manage fire in the region. The overall fire frequency in the Darwin region is probably too high and is having a negative impact on wildlife. However, the relatively low proportion of late dry season fires means the regime is probably not as bad as in some other regions. The management of fire is ad-hoc and strongly influenced by tenure. There needs to be a clear statement of regional fire targets and a strategy to achieve these. Continuation of the fire mapping is an essential component of achieving the targets.


2004 ◽  
Vol 34 (11) ◽  
pp. 2327-2339 ◽  
Author(s):  
Igor Drobyshev ◽  
Mats Niklasson

To evaluate the potential use of tree-ring data as a proxy for fire activity at the scale of a large boreal region, we analyzed a set of regional tree-ring chronologies of Siberian larch (Larix sibirica L.), a spatially implicit annual fire record, and monthly climate data for the Komi Republic for the period 1950–1990. In most years, annually burned area was below 0.001% of the republic's forested area and reached up to 0.7% during fire-prone years. Principal components (PC) of summer aridity resolved 64.2% of the annual variation in the number of fires, 12.2% in the average fire size, and 59.2% in the annually burned area. In turn, tree-ring PCs explained 65.2% of variation in fire-related weather PCs. Dendrochronological reconstruction of the annual number of fires and of the log-transformed annually burned area predicted 27.0% and 40.1% of the high-frequency variance of these variables, respectively. Coefficient of efficiency, a measure of reconstruction usefulness, reached 0.081 (number of fires) and 0.315 (annual area burned), supporting the obtained index as a realistic proxy for regional fire activity. Decadal variation in coefficient of efficiency values suggested improved monitoring accuracy since 1960 and more effective fire suppression during the last studied decade (1980–1990).


2016 ◽  
Vol 113 (48) ◽  
pp. 13684-13689 ◽  
Author(s):  
Alan H. Taylor ◽  
Valerie Trouet ◽  
Carl N. Skinner ◽  
Scott Stephens

Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire–climate relationships in the Sierra Nevada. We developed a 415-y record (1600–2015 CE) of fire activity by merging a tree-ring–based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire–climate relationships were strongest after Native American depopulation—following mission establishment (ca. 1775 CE)—reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire–climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire–climate models for addressing the increasing fire risk in California.


Author(s):  
Cathy Whitlock

The primary research objective has been to study the vegetational history of Yellowstone and its sensitivity to changes in climate and fire frequency. To establish a sequence of vegetational changes, a network of pollen records spanning the last 14,000 years has been studied from different types of vegetation within the Park. The relationship between modern pollen rain, modern vegetation and present­day climate in the northern Rocky Mountains has been the basis for interpreting past vegetation and climate from the fossil records. Changes in fire regime during the past 14,000 years have been inferred from sedimentary charcoal and other fire proxy in lake sediments. Calibration of the fire signal is based on a study that measures the input of charcoal into lakes following the 1988 fires in Yellowstone.


Author(s):  
John Isaac Molefe

Despite its role and relevance in environmental management at all scales the use of fire has been contentious. The absence of information on fire parameters compounds the situation. This study derives fire parameter information for Botswana by analyzing MODIS fire data for (2001-2012), using conditional statements, and cluster mapping in ArcGIS. The study also related the fire information to other variables to examine how they interact with fire. The results of the study indicates that over the 12 year period the burned area has exhibited an upward trend. It has also shown that most of the fire in the country occur over the late dry season when the fires are potentially destructive. A south-north transect of fire frequency is observed, accompanied by an inverse relationship between frequency and intensity. Of all the factors, rainfall (0.638) and biomass(NDVI) (0.355) were the most significant contributors to the fire activity. The study demonstrated the utility of the MODIS fire data in characterizing the fire regime of the country and thus contribute to the policy process.


2007 ◽  
Vol 85 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Claude Lavoie ◽  
Stéphanie Pellerin

In this study, we reconstructed the long-term fire history of a set of ombrotrophic peatlands (bogs) located in a temperate region of southern Quebec (Bas-Saint-Laurent). Past and recent fire-free intervals (time interval between two consecutive fires) were compared using macrofossil analyses. During most of the Holocene epoch, fires were relatively rare events in bogs of the Bas-Saint-Laurent region. The fire-free intervals were approximately ten times longer (all sites considered) before the beginning of agricultural activities in the region (1800 AD) than after. This strongly suggests an anthropogenic influence on the fire regime prevailing in the bogs over the last 200 years. However, the shortening of the fire-free intervals was mainly the result of the ignition of one or two fires in almost every site during a relatively short period (200 years), rather than a higher fire frequency in each of the bogs. In some cases, fires had an influence on the vegetation structure of bogs, but it is more likely that a combination of several disturbances (fire, drainage, and drier than average summers) favoured the establishment of dense stands of pine and spruce, a forest expansion phenomenon that is now widespread in temperate bogs.


2015 ◽  
Vol 24 (8) ◽  
pp. 1045 ◽  
Author(s):  
Nancy H. F. French ◽  
Liza K. Jenkins ◽  
Tatiana V. Loboda ◽  
Michael Flannigan ◽  
Randi Jandt ◽  
...  

A multidecadal analysis of fire in Alaskan Arctic tundra was completed using records from the Alaska Large Fire Database. Tundra vegetation fires are defined by the Circumpolar Arctic Vegetation Map and divided into five tundra ecoregions of Alaska. A detailed review of fire records in these regions is presented, and an analysis of future fire potential was performed based on future climate scenarios. The average size of tundra fire based on the data record is 22 km2 (5454 acres). Fires show a mean size of 10 km2 (2452 acres) and median of 0.064 km2 (16 acres), indicating small fires are common. Although uncommon, 16 fires larger than 300 km2 (74 132 acres) have been recorded across four ecoregions and all five decades. Warmer summers with extended periods of drying are expected to increase fire activity as indicated by fire weather index. The implications of the current fire regime and potential changes in fire regime are discussed in the context of land management and ecosystem services. Current fire management practices and land-use planning in Alaska should be specifically tailored to the tundra region based on the current fire regime and in anticipation of the expected change in fire regime projected with climate change.


Fire ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 51 ◽  
Author(s):  
Leys ◽  
Griffin ◽  
Larson ◽  
McLauchlan

(1) Background: Frequent fire, climate variability, and human activities collectively influence savanna ecosystems. The relative role of these three factors likely varies on interannual, decadal, and centennial timescales. Here, we tested if Euro-American activities uncoupled drought and fire frequencies relative to previous centuries in a temperate savanna site. (2) Methods: We combined records of fire frequency from tree ring fire scars and sediment charcoal abundance, and a record of fuel type based on charcoal particle morphometry to reconstruct centennial scale shifts in fire frequency and fuel sources in a savanna ecosystem. We also tested the climate influence on fire occurrence with an independently derived tree-ring reconstruction of drought. We contextualized these data with historical records of human activity. (3) Results: Tree fire scars revealed eight fire events from 1822–1924 CE, followed by localized suppression. Charcoal signals highlight 13 fire episodes from 1696–2001. Fire–climate coupling was not clearly evident both before and after Euro American settlement The dominant fuel source shifted from herbaceous to woody fuel during the early-mid 20th century. (4) Conclusions: Euro-American settlement and landscape fragmentation disrupted the pre-settlement fire regime (fire frequency and fuel sources). Our results highlight the potential for improved insight by synthesizing interpretation of multiple paleofire proxies, especially in fire regimes with mixed fuel sources.


2005 ◽  
Vol 14 (3) ◽  
pp. 285 ◽  
Author(s):  
Jon E. Keeley

The San Francisco East Bay landscape is a rich mosaic of grasslands, shrublands and woodlands that is experiencing losses of grassland due to colonization by shrubs and succession towards woodland associations. The instability of these grasslands is apparently due to their disturbance-dependent nature coupled with 20th century changes in fire and grazing activity. This study uses fire history records to determine the potential for fire in this region and for evidence of changes in the second half of the 20th century that would account for shrubland expansion. This region has a largely anthropogenic fire regime with no lightning-ignited fires in most years. Fire suppression policy has not excluded fire from this region; however, it has been effective at maintaining roughly similar burning levels in the face of increasing anthropogenic fires, and effective at decreasing the size of fires. Fire frequency parallels increasing population growth until the latter part of the 20th century, when it reached a plateau. Fire does not appear to have been a major factor in the shrub colonization of grasslands, and cessation of grazing is a more likely immediate cause. Because grasslands are not under strong edaphic control, rather their distribution appears to be disturbance-dependent, and natural lightning ignitions are rare in the region, I hypothesize that, before the entrance of people into the region, grasslands were of limited extent. Native Americans played a major role in creation of grasslands through repeated burning and these disturbance-dependent grasslands were maintained by early European settlers through overstocking of these range lands with cattle and sheep. Twentieth century reduction in grazing, coupled with a lack of natural fires and effective suppression of anthropogenic fires, have acted in concert to favor shrubland expansion.


Sign in / Sign up

Export Citation Format

Share Document