Fire history of the San Francisco East Bay region and implications for landscape patterns

2005 ◽  
Vol 14 (3) ◽  
pp. 285 ◽  
Author(s):  
Jon E. Keeley

The San Francisco East Bay landscape is a rich mosaic of grasslands, shrublands and woodlands that is experiencing losses of grassland due to colonization by shrubs and succession towards woodland associations. The instability of these grasslands is apparently due to their disturbance-dependent nature coupled with 20th century changes in fire and grazing activity. This study uses fire history records to determine the potential for fire in this region and for evidence of changes in the second half of the 20th century that would account for shrubland expansion. This region has a largely anthropogenic fire regime with no lightning-ignited fires in most years. Fire suppression policy has not excluded fire from this region; however, it has been effective at maintaining roughly similar burning levels in the face of increasing anthropogenic fires, and effective at decreasing the size of fires. Fire frequency parallels increasing population growth until the latter part of the 20th century, when it reached a plateau. Fire does not appear to have been a major factor in the shrub colonization of grasslands, and cessation of grazing is a more likely immediate cause. Because grasslands are not under strong edaphic control, rather their distribution appears to be disturbance-dependent, and natural lightning ignitions are rare in the region, I hypothesize that, before the entrance of people into the region, grasslands were of limited extent. Native Americans played a major role in creation of grasslands through repeated burning and these disturbance-dependent grasslands were maintained by early European settlers through overstocking of these range lands with cattle and sheep. Twentieth century reduction in grazing, coupled with a lack of natural fires and effective suppression of anthropogenic fires, have acted in concert to favor shrubland expansion.


2007 ◽  
Vol 13 (3) ◽  
pp. 177 ◽  
Author(s):  
Owen Price ◽  
Bryan Baker

A nine year fire history for the Darwin region was created from Landsat imagery, and examined to describe the fire regime across the region. 43% of the region burned each year, and approximately one quarter of the fires occur in the late dry season, which is lower than most other studied areas. Freehold land, which covers 35% of the greater Darwin region, has 20% long-unburnt land. In contrast, most publicly owned and Aboriginal owned land has very high fire frequency (60-70% per year), and only 5% long unburnt. It seems that much of the Freehold land is managed for fire suppression, while the common land is burnt either to protect the Freehold or by pyromaniacs. Generalized Linear Modelling among a random sample of points revealed that fire frequency is higher among large blocks of savannah vegetation, and at greater distances from mangrove vegetation and roads. This suggests that various kinds of fire break can be used to manage fire in the region. The overall fire frequency in the Darwin region is probably too high and is having a negative impact on wildlife. However, the relatively low proportion of late dry season fires means the regime is probably not as bad as in some other regions. The management of fire is ad-hoc and strongly influenced by tenure. There needs to be a clear statement of regional fire targets and a strategy to achieve these. Continuation of the fire mapping is an essential component of achieving the targets.



2020 ◽  
Vol 29 (9) ◽  
pp. 832
Author(s):  
Kea H. Rutherford ◽  
Rand R. Evett ◽  
Peter Hopkinson

Over the last century, northern coastal scrub has encroached into open grasslands along the central California coast, increasing fire risk in coastal wildland–urban interfaces. Understanding prehistoric ecological conditions is crucial for fire mitigation projects. Current estimates of these conditions in coastal California grasslands and shrublands are largely speculative because tree ring data, lake sediment evidence and ethnographic information are sparse. Phytolith analysis is an alternative palaeoecological tool that has been successfully used to reconstruct the extent of prehistoric grass cover in California. Our study uses phytolith analysis of soil samples from the East Bay hills of the San Francisco Bay region as a novel approach to estimate prehistoric grassland distribution and infer fire frequency in central coastal California. Our data strongly indicate that many areas in the region were dominated by perennial bunchgrasses for at least several hundred years before European contact. Because grass-dominated grasslands in the East Bay hills are disturbance-dependent, our data suggest prehistoric fire frequency was of the order of 5 years or less in the region. Phytolith analysis is a useful technique for prehistoric fire regime reconstruction for grasslands and shrublands worldwide, leading to improved, data-based land management.



1990 ◽  
Vol 20 (2) ◽  
pp. 219-232 ◽  
Author(s):  
James S. Clark

Long-term fire, climate, and vegetation data were used together with simulation models to estimate the effects of 20th century climate change and fire suppression on fire regime and organic-matter accumulation in mixed-conifer stands of Itasca State Park, northwestern Minnesota. Spatial and temporal patterns of fire occurrence and forest composition over the last 150 years determined by stratigraphic charcoal, fire-scar, tree-ring, and pollen analyses in separate studies provide evidence for vegetation and fire relationships. Water balances constructed from temperature and precipitation data collected since 1840 were used to model fire probability and intensity of burn before fire suppression which began in 1910. Existing patterns of biomass accumulation in forest-floor, herb, shrub, and tree components were compared with fire history and topographic variability to provide a spatial perspective on fire effects. Simulation models used these relationships to estimate (i) how accumulation of organic matter had changed through the past under the different fire regimes that prevailed on different topographic aspects, (ii) the changes brought about by fire suppression in 1910, and (iii) the fire regimes and their effects that would have prevailed since fire suppression with the warm–dry climate of the 20th century. Humus, litter, shrubs, and herb cover were less abundant and more variable spatially and temporally before fire suppression. Spatial variability in forest-floor organic matter, which resulted from different fire frequencies in different vegetation and topographic settings before fire suppression, was largely gone by 1920 as a result of fire suppression. Had fire suppression not been instituted in 1910, fire frequency would have increased by 20–40% in the 20th century because of warmer and drier conditions. Forest-floor oganic matter would have been largely depleted by frequent and severe fires exposing mineral soils, particularly during the drought years of the 1930s. Herb biomass would have increased, shrubs would have been more variable, and tree seedling establishment would have been substantially altered. Time required for buildup of fuels limits the extent to which increased moisture deficits increase fire frequency.



2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.



2003 ◽  
Vol 12 (4) ◽  
pp. 309 ◽  
Author(s):  
Robert E. Keane ◽  
Geoffrey J. Cary ◽  
Russell Parsons

Spatial depictions of fire regimes are indispensable to fire management because they portray important characteristics of wildland fire, such as severity, intensity, and pattern, across a landscape that serves as important reference for future treatment activities. However, spatially explicit fire regime maps are difficult and costly to create requiring extensive expertise in fire history sampling, multivariate statistics, remotely sensed image classification, fire behaviour and effects, fuel dynamics, landscape ecology, simulation modelling, and geographical information systems (GIS). This paper first compares three common strategies for predicting fire regimes (classification, empirical, and simulation) using a 51�000�ha landscape in the Selway-Bitterroot Wilderness Area of Montana, USA. Simulation modelling is identified as the best overall strategy with respect to developing temporally deep spatial fire patterns, but it has limitations. To illustrate these problems, we performed three simulation experiments using the LANDSUM spatial model to determine the relative importance of (1) simulation time span; (2) fire frequency parameters; and (3) fire size parameters on the simulation of landscape fire return interval. The model used to simulate fire regimes is also very important, so we compared two spatially explicit landscape fire succession models (LANDSUM and FIRESCAPE) to demonstrate differences between model predictions and limitations of each on a neutral landscape. FIRESCAPE was developed for simulating fire regimes in eucalypt forests of south-eastern Australia. Finally, challenges for future simulation and fire regime research are presented including field data, scale, fire regime variability, map obsolescence, and classification resolution.



2011 ◽  
Vol 20 (2) ◽  
pp. 248 ◽  
Author(s):  
Tuomo Wallenius ◽  
Markku Larjavaara ◽  
Juha Heikkinen ◽  
Olga Shibistova

To study the poorly known fire history of Larix-dominated forest in central Siberia, we collected samples from 200 trees in 46 systematically located study plots. Our study area stretches ~90 km from north to south along the River Nizhnyaya Tunguska in northern Irkustk district. Cross-dated tree-ring chronology for all samples combined extended from the year 1360 AD to the present and included 76 fire years and 88 separate fire events. Average fire cycle gradually lengthened from 52 years in the 18th century to 164 years in the 20th century. During the same time, the number of recorded fires decreased even more steeply, i.e. by more than 85%. Fires were more numerous but smaller in the past. Contrary to expectations, climate change in the 20th century has not resulted in increased forest fires in this region. Fire suppression may have contributed to the scarcity of fires since the 1950s. However, a significant decline in fires was evident earlier; therefore an additional explanation is required, a reduction in human-caused ignitions being likely in the light of historical accounts.



2016 ◽  
Vol 113 (48) ◽  
pp. 13684-13689 ◽  
Author(s):  
Alan H. Taylor ◽  
Valerie Trouet ◽  
Carl N. Skinner ◽  
Scott Stephens

Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire–climate relationships in the Sierra Nevada. We developed a 415-y record (1600–2015 CE) of fire activity by merging a tree-ring–based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire–climate relationships were strongest after Native American depopulation—following mission establishment (ca. 1775 CE)—reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire–climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire–climate models for addressing the increasing fire risk in California.



1990 ◽  
Vol 68 (8) ◽  
pp. 1763-1767 ◽  
Author(s):  
Alan M. Masters

Time-since-fire distribution analysis is used to estimate forest fire frequency for the 1400 km2 Kootenay National Park, British Columbia, located on the west slope of the Rocky Mountains. The time-since-fire distribution indicates three periods of different fire frequency: 1988 to 1928, 1928 to 1788, and before 1788. The fire cycle for the park was > 2700 years for 1988 to 1928, 130 years between 1928 and 1788, and 60 years between 1778 and 1508. Longer fire cycles after 1788 and 1928 may be due, respectively, to cool climate associated with the Little Ice Age and a recent period of higher precipitation. Contrary to some fire history investigations in the region, neither a fire suppression policy since park establishment in 1919, nor the completion of the Windermere Highway through the park in 1923 appear to have changed the fire frequency from levels during pre-European occupation. Spatial partitioning of the time-since-fire distribution was unsuccessful. No relationship was found between elevation or aspect and fire frequency. Key words: fire cycle, Rocky Mountains, climate change.



2016 ◽  
Vol 86 (3) ◽  
pp. 247-259 ◽  
Author(s):  
Emma L. Davis ◽  
Colin J. Courtney Mustaphi ◽  
Amber Gall ◽  
Michael F.J. Pisaric ◽  
Jesse C. Vermaire ◽  
...  

AbstractLong-term records of wildfires and their controlling factors are important sources of information for informing land management practices. Here, dendrochronology and lake sediment analyses are used to develop a 3500-yr fire and vegetation history for a montane forest in Jasper National Park, Alberta, Canada. The tree-ring record (AD 1771-2012) indicates that this region historically experienced a mixed-severity fire regime, and that effective fire suppression excluded widespread fire events from the study area during the 20th century. A sediment core collected from Little Trefoil Lake, located near the Jasper townsite, is analyzed for subfossil pollen and macroscopic charcoal (>150 μm). When comparing the tree-ring record to the 3500-yr record of sediment-derived fire events, only high-severity fires are represented in the charcoal record. Comparisons between the charcoal record and historical climate and pollen data indicate that climate and vegetation composition have been important controls on the fire regime for most of the last 3500 yr. Although fire frequency is presently within the historical range of variability, the fire return interval of the last 150 yr is longer than expected given modern climate and vegetation conditions, indicating that humans have become the main control on fire activity around Little Trefoil Lake.



2013 ◽  
Vol 43 (1) ◽  
pp. 7-17 ◽  
Author(s):  
Seth H. Peterson ◽  
Janet Franklin ◽  
Dar A. Roberts ◽  
Jan W. van Wagtendonk

Decades of fire suppression have led to unnaturally large accumulations of fuel in some forest communities in the western United States, including those found in lower and midelevation forests in Yosemite National Park in California. We employed the Random Forests decision tree algorithm to predict fuel models as well as 1-h live and 1-, 10-, and 100-h dead fuel loads using a suite of climatic, topographic, remotely sensed, and burn history predictor variables. Climate variables and elevation consistently were most useful for predicting all types of fuels, but remotely sensed variables increased the kappa accuracy metric by 5%–12% age points in each case, demonstrating the utility of using disparate data sources in a topographically diverse region dominated by closed-canopy vegetation. Fire history information (time-since-fire) generally only increased kappa by 1% age point, and only for the largest fuel classes. The Random Forests models were applied to the spatial predictor layers to produce maps of fuel models and fuel loads, and these showed that fuel loads are highest in the low-elevation forests that have been most affected by fire suppression impacting the natural fire regime.



Sign in / Sign up

Export Citation Format

Share Document