scholarly journals A new liposomal formulation for antisense oligodeoxynucleotides with small size, high incorporation efficiency and good stability

2000 ◽  
Vol 1463 (2) ◽  
pp. 219-229 ◽  
Author(s):  
D.D Stuart ◽  
T.M Allen
2007 ◽  
Vol 177 (4S) ◽  
pp. 91-92
Author(s):  
Satoshi Anai ◽  
Yoshihisa Sakai ◽  
Steve Goodison ◽  
Kathleen Shiverick ◽  
Bob Brown ◽  
...  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S505-S505
Author(s):  
Huijin Yan ◽  
Mengzhou Xue ◽  
Christopher Power ◽  
Marc R Del-Bigio ◽  
James Peeling

2018 ◽  
Vol 69 (8) ◽  
pp. 1944-1948 ◽  
Author(s):  
Adina Turcu Stiolica ◽  
Maria Viorica Bubulica ◽  
Oana Elena Nicolaescu ◽  
Octavian Croitoru ◽  
Mariana Popescu ◽  
...  

A design of experiment (DoE) approach is presented for the optimization of Alendronate-hydroxyapatite nanoparticles� synthesis. The synthesis was performed using the chemical precipitation technique from calcium nitrate, diammonium hydrogen phosphate and alendronate. Synthesis temperature, reactant addition rate and ripening time were chosen as the most relevant experimental factors for our synthesis. Design of Experiments was used in order to measure these conclusive process parameters and their effect on controlling some final nanoparticles parameters, such us: alendronate incorporation efficiency (IncorporationEfficiency, %), hydroxyapatite crystallite size (Size_XRD, nm), hydroxyapatite particle size distribution (Size_DLS, �). Our study found that better HA-AL incorporation efficiency and small nonoparticles can be obtained using the following chemical process parameters: reaction temperature 30oC or smaller, ripening time 108h and addition rate 0.1mol/min. The analysis of more than one nanoparticles characteristics was possible using DoE software, MODDE 9.1. Thus, hydroxyapatite-alendronate incorporation efficiency should be expected to increase with decreasing temperature below 300C, increasing the maturate time at least 108h, at an addition rate of 0.1mol/min, in an N2 atmosphere. The same conditions will ensure nanoparticles small size that would be more desirable for the application of implants.


2004 ◽  
Vol 171 (6 Part 1) ◽  
pp. 2471-2476 ◽  
Author(s):  
SUSANNE FUESSEL ◽  
BERND KUEPPERS ◽  
SHUANGLI NING ◽  
MATTHIAS KOTZSCH ◽  
KAI KRAEMER ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 946
Author(s):  
Grêce Abdallah ◽  
Jean-Marc Giraudon ◽  
Rim Bitar ◽  
Nathalie De Geyter ◽  
Rino Morent ◽  
...  

Trichloroethylene (TCE) removal was investigated in a post-plasma catalysis (PPC) configuration in nearly dry air (RH = 0.7%) and moist air (RH = 15%), using, for non-thermal plasma (NTP), a 10-pin-to-plate negative DC corona discharge and, for PPC, Ce0.01Mn as a catalyst, calcined at 400 °C (Ce0.01Mn-400) or treated with nitric acid (Ce0.01Mn-AT). One of the key points was to take advantage of the ozone emitted from NTP as a potential source of active oxygen species for further oxidation, at a very low temperature (100 °C), of untreated TCE and of potential gaseous hazardous by-products from the NTP. The plasma-assisted Ce0.01Mn-AT catalyst presented the best CO2 yield in dry air, with minimization of the formation of gaseous chlorinated by-products. This result was attributed to the high level of oxygen vacancies with a higher amount of Mn3+, improved specific surface area and strong surface acidity. These features also allow the promotion of ozone decomposition efficiency. Both catalysts exhibited good stability towards chlorine. Ce0.01Mn-AT tested in moist air (RH = 15%) showed good stability as a function of time, indicating good water tolerance also.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 297
Author(s):  
Ana Belén García ◽  
Eleonora Longo ◽  
Mª Carmen Murillo ◽  
Ruperto Bermejo

Nowadays, there is a growing interest in finding new coloring molecules of natural origin that can increase and diversify the offer of natural food dyes already present in the market. In the present work, a B-phycoerythrin extract from the microalgae Porphyridium cruentum was tested as a food colorant in milk-based products. Using spectroscopy and colorimetry, the extract was characterized and gave evidence of good properties and good stability in the pH range between 4.0 and 9.0. Coloring studies were conducted to demonstrate that samples carrying the pink extract could be used for simulating the pink color of marketed milk-based products. The staining factors, representing the amount of pink protein to be added to reproduce the color of strawberry commercial products, ranged between 1.6 mg/L and 49.5 mg/L, being sufficiently low in all samples. Additionally, color stability during a short period of cold storage was studied: it demonstrated that the three tested types of dairy products remained stable throughout the 11-day analysis period with no significant changes. These results prove the potential of the B-phycoerythrin extract as a natural colorant and alternative ingredient to synthetic coloring molecules.


Sign in / Sign up

Export Citation Format

Share Document