Enantioselectivity of the hydrolysis of linoleic acid monoepoxides catalyzed by soybean fatty acid epoxide hydrolase

1992 ◽  
Vol 187 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Elizabeth Blee ◽  
Francis Schuber
1969 ◽  
Vol 23 (4) ◽  
pp. 869-878 ◽  
Author(s):  
J. H. Moore ◽  
R. C. Noble ◽  
W. Steele ◽  
J. W. Czerkawski

1. Sheep were given intraruminal infusions of maize oil or linoleic acid and samples of contents were taken from the rumen and abomasum at different times after the infusions. Hydrolysis of the maize oil occurred in the rumen with the production of mono- and di-glycerides as intermediates. Linoleic acid derived from the maize oil was hydrogenated to stearic acid. When linoleic acid was infused into the rumen, little or no stearic acid was produced and octadecenoic acid accumulated.2. When linoleic acid or maize oil was incubated with rumen contents in an artificial rumen and samples of the reaction mixtures were taken from the apparatus after various time intervals, the results were similar to those obtained in vivo, except that the hydrolysis of maize oil did not give rise to mono- and di-glycerides.3. These results are discussed in relation to previous findings on the effects of intraruminal infusions of maize oil or linoleic acid on the fatty acid composition of the blood triglycerides of sheep.


2000 ◽  
Vol 28 (6) ◽  
pp. 855-856 ◽  
Author(s):  
J. Edqvist ◽  
I. Farbos

In Euphorbia lagascae the major fatty acid in triacylglycerol is the epoxidated fatty acid vernolic acid (cis- 12-epoxyoctadeca-cis-9-enoic acid). The enzymic reactions occurring during the catabolism of epoxidated fatty acids during germination are not known, but it seems likely that the degradation requires the activity of an epoxide hydrolase. Epoxide hydrolases are a group of functionally related enzymes that catalyse the cofactor-independent hydrolysis of epoxides to their corresponding vicinal diols by the addition of a water molecule. Here we report the cloning and characterization of an epoxide hydrolase gene from E. lagascae. The structure of the gene is unusual since it lacks introns. A detailed investigation of the transcription pattern of the epoxide hydrolase gene shows that the gene is induced during germination. We have used in situ hybridization to identify in which tissues the gene is expressed during germination. We speculate that this epoxide hydrolase enzyme is involved in the catabolism of epoxidated fatty acids during germination of E. lagascae seeds.


1963 ◽  
Vol 41 (9) ◽  
pp. 1983-1990 ◽  
Author(s):  
N. H. Tattrie ◽  
J. R. Bennett

"Semi-synthetic" lecithins were prepared by the acylation of lysolecithin cadmium chloride complexes (the lysolecithins were produced from egg lecithin by hydrolysis with phospholipase A) in the presence of pyridine with 1-C14 myristoyl chloride. The labelled lecithins were hydrolyzed with phospholipase A to yield free fatty acids (94% of the label) and lysolecithins (6% of the label). However, when lysolecithins were enzymically acylated with 1-C14 linoleic acid and the resulting labelled lecithins cleaved with phospholipase A, no labelled fatty acid was detected in the lysolecithin fraction.Labelled lecithins were also enzymically synthesized with 1-C14 linoleic acid and lysolecithins prepared from egg lecithin by reaction with sodium methoxide. The labelled lecithins were hydrolyzed with phospholipase A and the labelled lysolecithins were isolated and reacylated enzymically with oleic acid. The hydrolysis of these lecithins with phospholipase A showed that the lysolecithins retained all the label.


1963 ◽  
Vol 41 (1) ◽  
pp. 1983-1990 ◽  
Author(s):  
N. H. Tattrie ◽  
J. R. Bennett

"Semi-synthetic" lecithins were prepared by the acylation of lysolecithin cadmium chloride complexes (the lysolecithins were produced from egg lecithin by hydrolysis with phospholipase A) in the presence of pyridine with 1-C14 myristoyl chloride. The labelled lecithins were hydrolyzed with phospholipase A to yield free fatty acids (94% of the label) and lysolecithins (6% of the label). However, when lysolecithins were enzymically acylated with 1-C14 linoleic acid and the resulting labelled lecithins cleaved with phospholipase A, no labelled fatty acid was detected in the lysolecithin fraction.Labelled lecithins were also enzymically synthesized with 1-C14 linoleic acid and lysolecithins prepared from egg lecithin by reaction with sodium methoxide. The labelled lecithins were hydrolyzed with phospholipase A and the labelled lysolecithins were isolated and reacylated enzymically with oleic acid. The hydrolysis of these lecithins with phospholipase A showed that the lysolecithins retained all the label.


2018 ◽  
Vol 59 (4) ◽  
pp. 684-695 ◽  
Author(s):  
Haruto Yamanashi ◽  
William E. Boeglin ◽  
Christophe Morisseau ◽  
Robert W. Davis ◽  
Gary A. Sulikowski ◽  
...  

Lipoxygenase (LOX)-catalyzed oxidation of the essential fatty acid, linoleate, represents a vital step in construction of the mammalian epidermal permeability barrier. Analysis of epidermal lipids indicates that linoleate is converted to a trihydroxy derivative by hydrolysis of an epoxy-hydroxy precursor. We evaluated different epoxide hydrolase (EH) enzymes in the hydrolysis of skin-relevant fatty acid epoxides and compared the products to those of acid-catalyzed hydrolysis. In the absence of enzyme, exposure to pH 5 or pH 6 at 37°C for 30 min hydrolyzed fatty acid allylic epoxyalcohols to four trihydroxy products. By contrast, human soluble EH [sEH (EPHX2)] and human or murine epoxide hydrolase-3 [EH3 (EPHX3)] hydrolyzed cis or trans allylic epoxides to single diastereomers, identical to the major isomers detected in epidermis. Microsomal EH [mEH (EPHX1)] was inactive with these substrates. At low substrate concentrations (<10 μM), EPHX2 hydrolyzed 14,15-epoxyeicosatrienoic acid (EET) at twice the rate of the epidermal epoxyalcohol, 9R,10R-trans-epoxy-11E-13R-hydroxy-octadecenoic acid, whereas human or murine EPHX3 hydrolyzed the allylic epoxyalcohol at 31-fold and 39-fold higher rates, respectively. These data implicate the activities of EPHX2 and EPHX3 in production of the linoleate triols detected as end products of the 12R-LOX pathway in the epidermis and implicate their functioning in formation of the mammalian water permeability barrier.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Rachel E Walker ◽  
Olga V Savinova ◽  
Theresa L Pedersen ◽  
John W Newman ◽  
Gregory C Shearer

Objective: We have previously observed fatty acid epoxides, a class of potent anti-inflammatory oxylipins, in circulating VLDL. The source of these epoxides is unknown. Cytochrome P450 (CYP450) produces them via oxygenation of polyunsaturated fatty acids (PUFAs), and soluble epoxide hydrolase (sEH) converts them to diols. Our objectives were 1) to investigate if incorporation of epoxides into VLDL occurs via hepatic VLDL synthesis and 2) to determine if incorporation is modulated by inflammation or by inhibition of hepatic sEH. Approach and Results: A 2х2 factorial design was used for treatment assignment. Livers were isolated from rats treated with pro-inflammatory lipopolysaccharide (LPS, 10 mg/kg ip) or saline. AUDA, an inhibitor of sEH (10 μM), was included or excluded in the perfusate (Control, N=3; LPS, N=4; AUDA, N=4; LPS+AUDA, N=4). Livers were perfused for 180 minutes. VLDL was isolated by ultra-centrifugation, then analyzed by LC-MS/MS for oxylipin content. Analyzed epoxides and diols were derived from alpha-linolenic acid (ALA), linoleic acid (LA), arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Two-way ANOVA’s were used with triglyceride concentration as a covariate. Concentrations (nM) are reported as mean [95% CI]. DHA-derived epoxides increased with AUDA treatment (3.91 [3.01, 5.07]) compared to livers without AUDA (2.06 [1.58, 2.67]) (p=0.004), but other epoxides were unchanged by AUDA. EPA and ALA-derived epoxides decreased with LPS treatment (0.32 [0.22, 0.47]; 2.44 [2.07, 2.87]) compared to animals without LPS (0.73 [0.46, 1.16]; 3.28 [2.71, 3.96]) (p=0.01; 0.02). AA and DHA-derived diols decreased with LPS treatment (1.01 [0.82, 1.25]; 0.21 [0.17, 0.26]) compared to animals without LPS (1.46 [1.15, 1.86]; 0.31 [0.24, 0.39]) (p=0.03; 0.03). Conclusions: Treatment with LPS and AUDA have significant effects on incorporation of epoxides and diols into VLDL, supporting hepatic incorporation controlled by inflammation. Inflammation decreased select EPA- and ALA-derived epoxides. In contrast, sEH inhibition increased only DHA-derived epoxides. Surprisingly, in VLDL only epoxides derived from omega-3 fatty acids were affected by either inflammation or inhibition of sEH.


Author(s):  
S. К. Temirbekova ◽  
Yu. V. Afanaseva ◽  
I. M. Kulikov ◽  
G. V. Metlina ◽  
S. A. Vasilchenko

The results of long-term studies of the biological, morphological and phenological features of the introduced new culture of safflower in the Central, Volga and North Caucasus regions are presented. Optimum parameters of depth of seeding (5-6 cm), seeding rates (300-350 thousand pieces/hectare or 12-14 kg), ensuring high productivity, oil content and quality of seeds are established. For the first time, the relationship between moisture availability of vegetation periods with accumulation of oil content and a change in the fatty acid composition was established. Oilseed (in untreated seeds) in the regions was from 14,5 to 31,2%, in excessively wet 2013 – 6,4% in the Moscow region and 8,6% in the Saratov region. Fatty acid composition revealed a high content of oleic acid in Krasa Stupinskaya variety – 13,6-16,8%, linoleic acid – 68,5-75,7%. The yield of oil in the Moscow region was 240 kg/ha. The yield of Krasa Stupinskaya in the Moscow Region was 0,6 t/ha, the Rostov Region 0,8 t/ha and Saratov Region 1,2 t/ha, with an average weight of 1000 seeds, respectively, by regions: 40,0 g, 47,3 g and 40,9 g. The growing season for growing seeds was 105 days in the Moscow Region, 94 days in the Rostov Region and 95 days in the Saratov Region. It has been established that excessive moistening during the flowering and seed filling period increases the harmfulness of enzyme-mycosis seed depletion (EMIS) – biological injury during maturation (enzymatic stage), followed by the seeding of the seeds with the phytopathogen Alternaria carthami Chowdhury. In the breeding programs for productivity and oil content, it is recommended to use the varieties Moldir (Kazakhstan) and Krasa Stupinskaya (FGBNU VSTISP), the fatty acid composition of which is characterized by an increased content of oleic and linoleic acid, which is of particular value for storage and use for food purposes.


Sign in / Sign up

Export Citation Format

Share Document