scholarly journals Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation

1995 ◽  
Vol 68 (1) ◽  
pp. 40-45 ◽  
Author(s):  
J. Engel ◽  
A.J. Sowerby ◽  
S.A. Finch ◽  
M. Fechner ◽  
A. Stier
2019 ◽  
Vol 8 (4) ◽  
pp. 5279-5287

Detection and understanding of different high frequency phenomenon in multilayered underground (UG) cable require a thorough study of wave propagation mechanism which is governed by the line parameters of the cable. Line parameters are the functions of cable geometric and electromagnetic properties. Therefore the inclusion of semiconducting screen in cable structure influences the line parameters as well as wave properties of the cable. This paper aims to investigate the effects of the variation of different geometric and electrical properties of the semiconducting screen on line parameters as well as wave propagation characteristics of UG cable over a wide range of frequency. The complete impedance matrix of cable considering the effect of the semiconducting screen is derived using loop current analysis without invoking the theory of a double-layered conductor system. A comparative analysis on the effect of parametric variations of the semiconducting screen on line parameters as well as wave properties between the cable with and without semiconducting screen over a wide range of frequency is performed. This analysis indicates that the wave properties like attenuation or phase velocity are considerably influenced by inclusions of the semiconducting screen in cable structure, especially at high frequency.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052099
Author(s):  
R M Taziev

Abstract The success on the growth of new piezoelectric materials allows sufficiently increase the operating temperature of the surface acoustic wave (SAW) devices from 300°C to 1000°C. A new calcium yttrium aluminate (CaYAl3O7) single crystal of the tetragonal symmetry has piezoelectric properties up to the temperature of 1000°C. The paper presents a numerical study of the surface acoustic wave properties in the crystal. The SAW velocity, electromechanical coupling coefficient and power flow angle are studied for different crystal cuts of CaYAl3O7. It is shown that the maximum value of SAW coupling coefficient (0.24%) is on the Z+60°-cut and wave propagation direction along the X-axis of the crystal. For the Z-cut and wave propagation direction along the X+45°-axis of crystal, the SAW coupling coefficient is equal to 0.2%. These two cuts of the crystal are potentially useful for SAW device applications.


2021 ◽  
Author(s):  
Borna Maraghechi

Hyperthermia is a cancer treatment modality that could be delivered as a stand-alone treatment or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. This dissertation describes the experiments and simulations performed to obtain the temperature dependence of acoustic harmonics generated by nonlinear ultrasound propagation in several media including: water, an attenuating tissue-mimicking liquid, ex vivo bovine muscle tissues, and tissue-mimicking gel phantoms. The mechanisms of action of harmonic generation in water and in the attenuating liquid, made by a mixture of 90% glycerol and 10% water (by volume), as a function of temperature at various frequencies have been investigated using a temperature dependent Khokhlov–Zabolotskaya–Kuznetsov (KZK) nonlinear acoustic wave propagation model. The simulation results were compared with and validated by measurements. In water, the harmonic amplitudes decrease with increasing the temperature at low frequencies (1 and 3.3 MHz), while the opposite temperature dependence was observed at higher frequencies (13 and 20 MHz). The harmonic generation significantly increased with temperature in the tissue-mimicking liquid at both frequencies of 5 and 13 MHz. The temperature dependence of harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues were measured using a commercial high-frequency ultrasound imaging system, and a new noninvasive ultrasound-based thermometry has been developed that is based on the backscattered energy of the harmonics. The sensitivity of this new thermometry technique to medium’s motion was studied and compared with the conventional echo-shift thermometry technique. Based on this study, it is suggested that noninvasive temperature estimation is feasible using acoustic harmonics with lower sensitivity to motion artifacts compared to the conventional echo-shift technique.


2012 ◽  
Vol 1 (33) ◽  
pp. 51
Author(s):  
Alireza Jafari ◽  
Nick Cartwright

Predicting wave properties via parametric wave propagation models are broadly used in many coastal engineering applications. Numerous researchers have refined these types of models to increase their accuracy including; Battjes and Janssen (1978), Thornton and Guza (1983), Baldock et al. (1998), and Alsina and Baldock (2007). Alsina and Baldock (2007), proposed an improved parametric wave propagation models for a non-saturated surfzone which returns relatively more accuracy in comparison to others. In this paper, the Alsina and Baldock (2007) model along with Baldock et al. (1998) and Thornton and Guza (1983), are applied to data collected in South-East Queensland under stormy and calm conditions as well as laboratory data. Some of the comparisons indicate the need to incorporate some additional energy loss at the break point to account for plunging type breakers where the existing bore dissipation model is insufficient.


Author(s):  
A. Dolatshah ◽  
F. Nelli ◽  
A. Alberello ◽  
L. Bruneau ◽  
L. G. Bennetts ◽  
...  

Waves penetrate deep into the ice covered seas, inducing breakup of the ice cover. Concomitantly, the ice cover attenuates the wave energy over distance, so that wave impacts die out eventually. Observations of wave attenuation and concurrent wave-induced breakup in the literature are serendipitous due to difficulties in making measurements in ice covered seas. Hence understanding of wave-ice interactions remain uncertain. Here we present measurements of wave propagation through ice covered waters in the new experimental wave-ice facility at the University of Melbourne. The facility comprises of a 14m long and 0.76m wide flume in a refrigerated chamber, where temperatures can be lowered down to −12 degrees Celsius to generate a continuous ice cover on the water surface. A wave maker, installed at one end, is used to generate regular waves, ranging from gently-sloping to storm-like conditions. Wave attenuation rates are determined from video-camera images of the displacements of markers embedded in the ice cover. The experiments investigated wave propagation through the continuous ice cover, breakup, and propagation through the broken ice cover. Spatial evolution of the breakup and geometrical properties of floes are monitored and correlated with incident wave properties. Wave attenuation over broken ice is investigated and compared against the continuous ice case.


Sign in / Sign up

Export Citation Format

Share Document