23. A new cold stage for use at −196°C in the electron microscope: Modification of the EFFA freezing specimen holder

Cryobiology ◽  
1965 ◽  
Vol 2 (1) ◽  
pp. 16
Author(s):  
Louis T. Germinario

A liquid nitrogen stage has been developed for the JEOL JEM-100B electron microscope equipped with a scanning attachment. The design is a modification of the standard JEM-100B SEM specimen holder with specimen cooling to any temperatures In the range ~ 55°K to room temperature. Since the specimen plane is maintained at the ‘high resolution’ focal position of the objective lens and ‘bumping’ and thermal drift la minimized by supercooling the liquid nitrogen, the high resolution capability of the microscope is maintained (Fig.4).


Author(s):  
Tokio Nei ◽  
Haruo Yotsumoto ◽  
Yoichi Hasegawa ◽  
Yuji Nagasawa

In order to observe biological specimens in their native state, that is, still containing their water content, various methods of specimen preparation have been used, the principal two of which are the chamber method and the freeze method.Using its recently developed cold stage for installation in the pre-evacuation chamber of a scanning electron microscope, we have succeeded in directly observing a biological specimen in its frozen state without the need for such conventional specimen preparation techniques as drying and metallic vacuum evaporation. (Echlin, too, has reported on the observation of surface structures using the same freeze method.)In the experiment referred to herein, a small sliced specimen was place in the specimen holder. After it was rapidly frozen by freon cooled with liquid nitrogen, it was inserted into the cold stage of the specimen chamber.


Author(s):  
William P. Wergin ◽  
Eric F. Erbe ◽  
Eugene L. Vigil

Investigators have long realized the potential advantages of using a low temperature (LT) stage to examine fresh, frozen specimens in a scanning electron microscope (SEM). However, long working distances (W.D.), thick sputter coatings and surface contamination have prevented LTSEM from achieving results comparable to those from TEM freeze etch. To improve results, we recently modified techniques that involve a Hitachi S570 SEM, an Emscope SP2000 Sputter Cryo System and a Denton freeze etch unit. Because investigators have frequently utilized the fractured E face of the plasmalemma of yeast, this tissue was selected as a standard for comparison in the present study.In place of a standard specimen holder, a modified rivet was used to achieve a shorter W.D. (1 to -2 mm) and to gain access to the upper detector. However, the additional height afforded by the rivet, precluded use of the standard shroud on the Emscope specimen transfer device. Consequently, the sample became heavily contaminated (Fig. 1). A removable shroud was devised and used to reduce contamination (Fig. 2), but the specimen lacked clean fractured edges. This result suggested that low vacuum sputter coating was also limiting resolution.


Author(s):  
W.K. Lo ◽  
J.C.H. Spence

An improved design for a combination Scanning Tunnelling Microscope/TEM specimen holder is presented. It is based on earlier versions which have been used to test the usefulness of such a device. As with the earlier versions, this holder is meant to replace the standard double-tilt specimen holder of an unmodified Philips 400T TEM. It allows the sample to be imaged simultaneously by both the STM and the TEM when the TEM is operated in the reflection mode (see figure 1).The resolution of a STM is determined by its tip radii as well as its stability. This places strict limitations on the mechanical stability of the tip with respect to the sample. In this STM the piezoelectric tube scanner is rigidly mounted inside the endcap of the STM holder. The tip coarse approach to the sample (z-direction) is provided by an Inchworm which is located outside the TEM vacuum.


Author(s):  
M.K. Lamvik ◽  
D.A. Kopf ◽  
S.D. Davilla ◽  
J.D. Robertson

Last year we reported1 that there is a striking reduction in the rate of mass loss when a specimen is observed at liquid helium temperature. It is important to determine whether liquid helium temperature is significantly better than liquid nitrogen temperature. This requires a good understanding of mass loss effects in cold stages around 100K.


Author(s):  
K. Fukushima ◽  
T. Kaneyama ◽  
F. Hosokawa ◽  
H. Tsuno ◽  
T. Honda ◽  
...  

Recently, in the materials science field, the ultrahigh resolution analytical electron microscope (UHRAEM) has become a very important instrument to study extremely fine areas of the specimen. The requirements related to the performance of the UHRAEM are becoming gradually severer. Some basic characteristic features required of an objective lens are as follows, and the practical performance of the UHRAEM should be judged by totally evaluating them.1) Ultrahigh resolution to resolve ultrafine structure by atomic-level observation.2) Nanometer probe analysis to analyse the constituent elements in nm-areas of the specimen.3) Better performance of x-ray detection for EDS analysis, that is, higher take-off angle and larger detection solid angle.4) Higher specimen tilting angle to adjust the specimen orientation.To attain these requirements simultaneously, the objective lens polepiece must have smaller spherical and chromatic aberration coefficients and must keep enough open space around the specimen holder in it.


Author(s):  
Zhang zhaohua ◽  
Luo Dong ◽  
Guo Yisong

Since early 1970's the use of cold stage on SEM for observation of hydrated samples in their natural state has become more and more popular despite its high cost. Experiences gained from earlier experiments indicate that a successful design should incorporate thefollowing features:1. The specimen temperature should be below −135°C (the recrystallization point of water), lower the temperature, better the results.2. The frozen specimen, the cold block in the specimen preparation chamber, as well as the cold stage should be kept under vacuum at all times to keep them frost free.3. Different specimen preparation processes such as fracturing, coating and sublimation should be possible in one compact preparation chamber .


1972 ◽  
Vol 43 (6) ◽  
pp. 866-871
Author(s):  
S. Kritzinger ◽  
D. J. Marais ◽  
T. Monaci

2001 ◽  
Vol 7 (3) ◽  
pp. 287-291
Author(s):  
Toshie Yaguchi ◽  
Hiroaki Matsumoto ◽  
Takeo Kamino ◽  
Tohru Ishitani ◽  
Ryoichi Urao

AbstractIn this study, we discuss a method for cross-sectional thin specimen preparation from a specific site using a combination of a focused ion beam (FIB) system and an intermediate voltage transmission electron microscope (TEM). A FIB-TEM compatible specimen holder was newly developed for the method. The thinning of the specimen using the FIB system and the observation of inside structure of the ion milled area in a TEM to localize a specific site were alternately carried out. The TEM fitted with both scanning transmitted electron detector and secondary electron detector enabled us to localize the specific site in a halfway milled specimen with the positional accuracy of better than 0.1 µm. The method was applied to the characterization of a precipitate in a steel. A submicron large precipitate was thinned exactly at its center for the characterization by a high-resolution electron microscopy and an elemental mapping.


Sign in / Sign up

Export Citation Format

Share Document