Large scale water reclamation by reverse osmosis

Desalination ◽  
1976 ◽  
Vol 19 (1-3) ◽  
pp. 421-432
Author(s):  
T.J. Larson ◽  
David G. Argo
2019 ◽  
Author(s):  
Chem Int

The objective of this work is to study the ageing state of a used reverse osmosis (RO) membrane taken in Algeria from the Benisaf Water Company seawater desalination unit. The study consists of an autopsy procedure used to perform a chain of analyses on a membrane sheet. Wear of the membrane is characterized by a degradation of its performance due to a significant increase in hydraulic permeability (25%) and pressure drop as well as a decrease in salt retention (10% to 30%). In most cases the effects of ageing are little or poorly known at the local level and global measurements such as (flux, transmembrane pressure, permeate flow, retention rate, etc.) do not allow characterization. Therefore, a used RO (reverse osmosis) membrane was selected at the site to perform the membrane autopsy tests. These tests make it possible to analyze and identify the cause as well as to understand the links between performance degradation observed at the macroscopic scale and at the scale at which ageing takes place. External and internal visual observations allow seeing the state of degradation. Microscopic analysis of the used membranes surface shows the importance of fouling. In addition, quantification and identification analyses determine a high fouling rate in the used membrane whose foulants is of inorganic and organic nature. Moreover, the analyses proved the presence of a biofilm composed of protein.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2772
Author(s):  
Vishwas Powar ◽  
Rajendra Singh

Plummeting reserves and increasing demand of freshwater resources have culminated into a global water crisis. Desalination is a potential solution to mitigate the freshwater shortage. However, the process of desalination is expensive and energy-intensive. Due to the water-energy-climate nexus, there is an urgent need to provide sustainable low-cost electrical power for desalination that has the lowest impact on climate and related ecosystem challenges. For a large-scale reverse osmosis desalination plant, we have proposed the design and analysis of a photovoltaics and battery-based stand-alone direct current power network. The design methodology focusses on appropriate sizing, optimum tilt and temperature compensation techniques based on 10 years of irradiation data for the Carlsbad Desalination Plant in California, USA. A decision-tree approach is employed for ensuring hourly load-generation balance. The power flow analysis evaluates self-sufficient generation even during cloud cover contingencies. The primary goal of the proposed system is to maximize the utilization of generated photovoltaic power and battery energy storage with minimal conversions and transmission losses. The direct current based topology includes high-voltage transmission, on-the-spot local inversion, situational awareness and cyber security features. Lastly, economic feasibility of the proposed system is carried out for a plant lifetime of 30 years. The variable effect of utility-scale battery storage costs for 16–18 h of operation is studied. Our results show that the proposed design will provide low electricity costs ranging from 3.79 to 6.43 ¢/kWh depending on the debt rate. Without employing the concept of baseload electric power, photovoltaics and battery-based direct current power networks for large-scale desalination plants can achieve tremendous energy savings and cost reduction with negligible carbon footprint, thereby providing affordable water for all.


1991 ◽  
Vol 23 (10-12) ◽  
pp. 2181-2187 ◽  
Author(s):  
Kee Kean Chin ◽  
Say Leong Ong

The performance of a 480 cubic metres per day water reclamation plant was evaluated. The treatment train of this plant was sand filtration or carbon adsorption −0.45 µm cartridge filtration - reverse osmosis desalting - zeolite ion exchange deionisation. The raw water used was reclaimed sewage which had been treated by the activated sludge system and polished by chemical coagulation and flocculation, multimedia sand filtration and chlorination. After the reverse osmosis step using the spiral wound cellulose acetate membrane most of the cations, anions and heavy metals present in the water were removed.


2018 ◽  
Vol 67 (3) ◽  
pp. 211-217 ◽  
Author(s):  
Vo Huu Cong

Abstract This research aims to provide an overview of the seawater encroachment threat on agriculture in lowland areas and potential solutions for better practices. It was found that the Mekong river delta experiences severe impacts from climate change with more than 75% of provinces affected by seawater intrusion, of which Kien Giang, Ca Mau and Ben Tre provinces are the most influenced with 70% affected areas. The salinity of river water was observed in the range of 15–30 g/L in 2015; meanwhile, the strongest tolerated rice species reached ceiling values of 3–4 g/L. Emerging challenges were identified due to the uncertain upstream hydrological regime coupled with high levels of tide, field evaporation and water withdrawal. The development strategies of affected provinces are given on the modification of rice tolerant capacity, and modification to aquaculture in areas with high salinity, in which water purification is in urgent demand. Desalination technologies have been proposed with various innovations which are still not practical on a large scale. The desalination of seawater and brackish water by reverse osmosis, nano-filtration, electro-dialysis, ion-exchange resins, electrochemical processes and thermal distillation has been applied to agriculture. The advance reverse osmosis shows most potential because of its advances in treating performance, cost effectiveness and effective rejection of brine.


Author(s):  
Bo Yang Yu ◽  
Tomonori Honda ◽  
Syed Zubair ◽  
Mostafa H. Sharqawy ◽  
Maria C. Yang

Large-scale desalination plants are complex systems with many inter-disciplinary interactions and different levels of sub-system hierarchy. Advanced complex systems design tools have been shown to have a positive impact on design in aerospace and automotive, but have generally not been used in the design of water systems. This work presents a multi-disciplinary design optimization approach to desalination system design to minimize the total water production cost of a 30,000m3/day capacity reverse osmosis plant situated in the Middle East, with a focus on comparing monolithic with distributed optimization architectures. A hierarchical multi-disciplinary model is constructed to capture the entire system’s functional components and subsystem interactions. Three different multi-disciplinary design optimization (MDO) architectures are then compared to find the optimal plant design that minimizes total water cost. The architectures include the monolithic architecture multidisciplinary feasible (MDF), individual disciplinary feasible (IDF) and the distributed architecture analytical target cascading (ATC). The results demonstrate that an MDF architecture was the most efficient for finding the optimal design, while a distributed MDO approach such as analytical target cascading is also a suitable approach for optimal design of desalination plants, but optimization performance may depend on initial conditions.


2013 ◽  
Vol 821-822 ◽  
pp. 1098-1101
Author(s):  
Wei Xing Li ◽  
Jing Huan Ma ◽  
Ying Liu ◽  
Qing Tong Ren ◽  
Zhan Sheng Ma

Reverse Osmosis (RO) is an effective method to get fresh water from seawater or brackish water. The uncontrolled discharge of RO concentrated brine can contaminate water aquifers and damage marine ecosystems. The techniques to treat or utilize the rejected brine are the research focus in recent years. This paper tried to give an overview of latest development in this filed in order to provide references for its actual application in large-scale engineering.


TECHNOLOGY ◽  
2018 ◽  
Vol 06 (01) ◽  
pp. 36-48 ◽  
Author(s):  
Qingsong Tu ◽  
Tiange Li ◽  
Ao Deng ◽  
Kevin Zhu ◽  
Yifei Liu ◽  
...  

A scale-up nanoporous membrane centrifuge is designed and modeled. It can be used for nanoscale scale separation including reverse osmosis desalination. There are micron-size pores on the wall of the centrifuge and nanoscale pores on local graphene membrane patches that cover the micron-size pores. In this work, we derived the critical angular velocity required to counter-balance osmosis force, so that the reverse-osmosis (RO) desalination process can proceed. To validate this result, we conducted a large scale (four million atoms) full atom molecular dynamics (MD) simulation to examine the critical angular velocity required for reverse osmosis at nanoscale. It is shown that the analytical results derived based on fluid mechanics and the simulation results observed in MD simulation are consistent and well matched. The main advantage of such nanomaterial based centrifuge is its intrinsic anti-fouling ability to clear [Formula: see text] and [Formula: see text] ions accumulated at the vicinity of the pores due to the Coriolis effect. Analyses have been conducted to study the relation between osmotic pressure, centrifugal pressure, and water permeability.


Sign in / Sign up

Export Citation Format

Share Document