Atomic force microscope imaging of Escherichia coli cell using anti-E. coli antibody-conjugated probe (in aqueous) solutions

1999 ◽  
Vol 44 (21-22) ◽  
pp. 3827-3832 ◽  
Author(s):  
T. Tanaka ◽  
N. Nakamura ◽  
T. Matsunaga
Author(s):  
S.A.C. Gould ◽  
B. Drake ◽  
C.B. Prater ◽  
A.L. Weisenhorn ◽  
S.M. Lindsay ◽  
...  

The atomic force microscope (AFM) is an instrument that can be used to image many samples of interest in biology and medicine. Images of polymerized amino acids, polyalanine and polyphenylalanine demonstrate the potential of the AFM for revealing the structure of molecules. Images of the protein fibrinogen which agree with TEM images demonstrate that the AFM can provide topographical data on larger molecules. Finally, images of DNA suggest the AFM may soon provide an easier and faster technique for DNA sequencing.The AFM consists of a microfabricated SiO2 triangular shaped cantilever with a diamond tip affixed at the elbow to act as a probe. The sample is mounted on a electronically driven piezoelectric crystal. It is then placed in contact with the tip and scanned. The topography of the surface causes minute deflections in the 100 μm long cantilever which are detected using an optical lever.


Molecules ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 86-91 ◽  
Author(s):  
Jiye Cai ◽  
Yao Chen ◽  
Qingcai Xu ◽  
Yong Chen ◽  
Tao Zhao ◽  
...  

2001 ◽  
Vol 2 (2) ◽  
pp. 105-108 ◽  
Author(s):  
Thomas Kaasgaard ◽  
Chad Leidy ◽  
John Hjort Ipsen ◽  
Ole G. Mouritsen ◽  
Kent Jørgensen

1992 ◽  
Vol 29 (1) ◽  
pp. 68-78 ◽  
Author(s):  
M. DeRosa ◽  
M. D. Ficken ◽  
H. J. Barnes

Ninety commercial broiler chickens were divided into three equal groups; 30 were injected with brain-heart-infusion broth into the cranial thoracic air sacs (controls), 30 were similarly inoculated with a culture of Escherichia coli, and 30 were similarly inoculated with E. coli cell-free culture filtrate. Birds were examined from 0 to 6 hours post-inoculation. E. coli-inoculated and cell-free culture filtrate-inoculated chickens reacted similarly, with exudation of heterophils into the air sac. Microscopically, heterophils were present in low numbers perivascularly 0.5 hour after inoculation and became more numerous by 3 hours post-inoculation. By 6 hours post-inoculation, there was severe swelling of air sac epithelial cells and thickening of the air sac by proteinaceous fluid and heterophils. Ultrastructurally, air sac epithelial cells were swollen and vacuolated, and interdigitating processes were separated. Histologically and ultrastructurally, all features in control chickens were normal, with only rare heterophils in the air sac interstitium. In E. coli-inoculated and cell-free culture filtrate-inoculated chickens, cell counts (predominantly heterophils) in air sac lavage fluids increased markedly at 3 and 6 hours, with only slight increases in counts from lavages of controls. Heteropenia was observed in E. coli-inoculated chickens, whereas heterophilia was observed in cell-free filtrate chickens and controls. Ninety additional chickens were pretreated with cyclophosphamide, subdivided into three equal groups, and inoculated and examined similarly as above. Cyclophosphamide pretreatment reduced inflammatory changes in air sacs, lowered cell numbers in lavage fluids, and abolished hematologic changes; however, it did not prevent epithelial cell changes. These results indicate that cell-free culture filtrate of E. coli induces changes similar to those induced by cultures of E. coli.


Sign in / Sign up

Export Citation Format

Share Document