scholarly journals Retinoblastoma protein dephosphorylation is an early event of cellular response to prooxidant conditions

FEBS Letters ◽  
2000 ◽  
Vol 470 (2) ◽  
pp. 211-215 ◽  
Author(s):  
Franca Esposito ◽  
Lucia Russo ◽  
Tommaso Russo ◽  
Filiberto Cimino
2020 ◽  
Vol 21 (2) ◽  
pp. 446 ◽  
Author(s):  
Adrián Campos ◽  
Andrés Clemente-Blanco

Cells are constantly suffering genotoxic stresses that affect the integrity of our genetic material. Genotoxic insults must be repaired to avoid the loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental abnormalities and tumorigenesis. To combat this threat, eukaryotic cells have evolved a set of sophisticated molecular mechanisms that are collectively known as the DNA damage response (DDR). This surveillance system controls several aspects of the cellular response, including the detection of lesions, a temporary cell cycle arrest, and the repair of the broken DNA. While the regulation of the DDR by numerous kinases has been well documented over the last decade, the complex roles of protein dephosphorylation have only recently begun to be investigated. Here, we review recent progress in the characterization of DDR-related protein phosphatases during the response to a DNA lesion, focusing mainly on their ability to modulate the DNA damage checkpoint and the repair of the damaged DNA. We also discuss their protein composition and structure, target specificity, and biochemical regulation along the different stages encompassed in the DDR. The compilation of this information will allow us to better comprehend the physiological significance of protein dephosphorylation in the maintenance of genome integrity and cell viability in response to genotoxic stress.


1996 ◽  
Vol 271 (6) ◽  
pp. C2037-C2044 ◽  
Author(s):  
B. Xu ◽  
B. A. Wilson ◽  
L. Lu

Our previous studies have shown that a voltage-gated K+ channel is highly expressed in proliferating human myeloblastic ML-1 cells and is suppressed in the early stages of 12-O-tetradecanoylphorbol-13-acetate-induced ML-1 cell differentiation. In the present study, we report that inhibition of the K+ channel activity by 4-aminopyridine (4-AP) suppressed ML-1 cell proliferation, as measured by DNA synthesis. Cell cycle mapping indicated that ML-1 cells were arrested in G1 phase after 24-h treatment with 4-AP. Blockade of ML-1 cells at the G1/S boundary of the cell cycle with aphidicolin revealed that ML-1 cells past the G1 checkpoint were capable of entering S phase and synthesizing DNA independently of the channel blockade. ML-1 cell differentiation, measured by CD14 marker protein expression, revealed that the effect of 4-AP was to cause growth arrest and that it did not cause differentiation. Dephosphorylation of retinoblastoma protein accompanied inhibition of ML-1 cell proliferation and suggested that suppression of K+ channel activity by 4-AP is associated with retinoblastoma protein-mediated G1 arrest in ML-1 cells. Moreover, we found that ML-1 cell volume increased 35 +/- 7% after 4-AP treatment, which could be an early event triggering inhibition of ML-1 cell proliferation. These findings suggest that a 4-AP-sensitive K+ channel may play an important role in the transduction of mitogenic signals in ML-1 cells.


2014 ◽  
Vol 111 (11) ◽  
pp. 4097-4102 ◽  
Author(s):  
M. S. Choy ◽  
M. Hieke ◽  
G. S. Kumar ◽  
G. R. Lewis ◽  
K. R. Gonzalez-DeWhitt ◽  
...  

2015 ◽  
Vol 57 ◽  
pp. 189-201 ◽  
Author(s):  
Jay Shankar ◽  
Cecile Boscher ◽  
Ivan R. Nabi

Spatial organization of the plasma membrane is an essential feature of the cellular response to external stimuli. Receptor organization at the cell surface mediates transmission of extracellular stimuli to intracellular signalling molecules and effectors that impact various cellular processes including cell differentiation, metabolism, growth, migration and apoptosis. Membrane domains include morphologically distinct plasma membrane invaginations such as clathrin-coated pits and caveolae, but also less well-defined domains such as lipid rafts and the galectin lattice. In the present chapter, we will discuss interaction between caveolae, lipid rafts and the galectin lattice in the control of cancer cell signalling.


1999 ◽  
Vol 82 (08) ◽  
pp. 305-311 ◽  
Author(s):  
Yuri Koshelnick ◽  
Monika Ehart ◽  
Hannes Stockinger ◽  
Bernd Binder

IntroductionThe urokinase-urokinase receptor (u-PA-u-PAR) system seems to play a crucial role in a number of biological processes, including local fibrinolysis, tumor invasion, angiogenesis, neointima and atherosclerotic plaque formation, inflammation, and matrix remodeling during wound healing and development.1-6 Binding of urokinase to its specific receptor provides cells with a localized proteolytic potential. It stimulates conversion of cell surface-bound plasminogen into active plasmin, which, in turn, is required for proteolytic degradation of basement membrane components, including fibronectin, collagen, laminin, and proteoglycan core proteins.7 Moreover, plasmin activates other matrix-degrading enzymes, such as matrix metalloproteinases.8 Overexpression of u-PA/u-PAR correlates with tumor invasion and metastasis formation,9-13 while reduction of cell-surface bound u-PA and inhibition of u-PAR expression leads to a significant decrease of invasive and metastatic activity.14 Specific antagonists that suppress binding of u-PA to u-PAR have been shown to inhibit cell-surface plasminogen activation, tumor growth, and angiogenesis both in vitro and in vivo models.15,16 Independently of its proteolytic activity, u-PA is implicated in many biological processes that seem to require u-PAR-mediated intracellular signal transduction, such as proliferation, chemotactic movement and adhesion, migration, and differentiation.17 Data obtained in the late 1980s indicated that u-PA not only provides cells with local proteolytic activity, but might also be capable of transducing signals to the cell.18-22 At that time, however, the u-PAR has just been isolated, cloned, and identified as a glycosylphosphatidylinositol (GPI)-linked protein and not a transmembrane protein. Signaling via the u-PAR was, therefore, regarded as being unlikely, and the effects of u-PA on cell proliferation18-22 were thought to be mediated by proteolytic activation of latent growth factors. The assumption of direct signaling via u-PAR was, in fact, considered controversial, until about 10 years later when a physical association between u-PAR and signaling proteins was found.23 From this report on, several proteins associated with u-PAR have been identified. Now, u-PAR seems to be part of a large “signalosome” associated and interacting with several proteins on both the outside and inside of the cell.


Sign in / Sign up

Export Citation Format

Share Document