Effects of resistant starch and nonstarch polysaccharides on luminal environment and AOM-induced apoptosis

2001 ◽  
Vol 120 (5) ◽  
pp. A667-A667
Author(s):  
R LELEU ◽  
Y HU ◽  
G YOUNG
2001 ◽  
Vol 81 (3) ◽  
pp. 1031-1064 ◽  
Author(s):  
David L. Topping ◽  
Peter M. Clifton

Resistant starch (RS) is starch and products of its small intestinal digestion that enter the large bowel. It occurs for various reasons including chemical structure, cooking of food, chemical modification, and food mastication. Human colonic bacteria ferment RS and nonstarch polysaccharides (NSP; major components of dietary fiber) to short-chain fatty acids (SCFA), mainly acetate, propionate, and butyrate. SCFA stimulate colonic blood flow and fluid and electrolyte uptake. Butyrate is a preferred substrate for colonocytes and appears to promote a normal phenotype in these cells. Fermentation of some RS types favors butyrate production. Measurement of colonic fermentation in humans is difficult, and indirect measures (e.g., fecal samples) or animal models have been used. Of the latter, rodents appear to be of limited value, and pigs or dogs are preferable. RS is less effective than NSP in stool bulking, but epidemiological data suggest that it is more protective against colorectal cancer, possibly via butyrate. RS is a prebiotic, but knowledge of its other interactions with the microflora is limited. The contribution of RS to fermentation and colonic physiology seems to be greater than that of NSP. However, the lack of a generally accepted analytical procedure that accommodates the major influences on RS means this is yet to be established.


2003 ◽  
Vol 24 (8) ◽  
pp. 1347-1352 ◽  
Author(s):  
R. K. Le Leu ◽  
I. L. Brown ◽  
Y. Hu ◽  
G. P. Young

2017 ◽  
Vol 53 (4) ◽  
pp. 1079-1086 ◽  
Author(s):  
Jian Sun ◽  
Yin Wang ◽  
Xiuqiong Zhang ◽  
Søren K. Rasmussen ◽  
Xiaotong Jiang ◽  
...  

Author(s):  
D. W. Fairbain ◽  
M.D. Standing ◽  
K.L. O'Neill

Apoptosis is a genetically defined response to physiological stimuli that results in cellular suicide. Features common to apoptotic cells include chromatin condensation, oligonucleosomal DNA fragmentation, membrane blebbing, nuclear destruction, and late loss of ability to exclude vital dyes. These characteristics contrast markedly from pathological necrosis, in which membrane integrity loss is demonstrated early, and other features of apoptosis, which allow a non-inflammatory removal of dead and dying cells, are absent. Using heat shock-induced apoptosis as a model for examining stress response in cells, we undertook to categorize a variety of human leukemias and lymphomas with regard to their response to heat shock. We were also interested in determining whether a common temporal order was followed in cells dying by apoptosis. In addition, based on our previous results, we investigated whether increasing heat load resulted in increased apoptosis, with particular interest in relatively resistant cell lines, or whether the mode of death changed from apoptosis to necrosis.


Sign in / Sign up

Export Citation Format

Share Document