Imatinib mesylate (STI-571), a c-Abl kinase inhibitor, indirectly blocks receptor tyrosine kinase activation and induces apoptosis in a human cholangiocarcinoma cell line

2003 ◽  
Vol 124 (4) ◽  
pp. A742
Author(s):  
Mihnea V. Chiorean ◽  
Jung-Hwan Yoon ◽  
Steven F. Bronk ◽  
Scott H. Kaufmann ◽  
Gregory J. Gores
2003 ◽  
Vol 120 (5) ◽  
pp. 911-913 ◽  
Author(s):  
A. Drummond ◽  
P. Micallef-Eynaud ◽  
W. S. Douglas ◽  
J. A. Murphy ◽  
I. Hay ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2570-2570 ◽  
Author(s):  
Afsar Ali Mian ◽  
Usva Zafar ◽  
Oliver Ottmann ◽  
Martin Ruthardt ◽  
El-Nasir M A Lalani

Introduction: The t(9;22) (q34;q11) translocation results in the constative active BCR/ABL tyrosine kinase. Der22 involves the Breakpoint Cluster Region (BCR) gene locus with two principal breaks: a. M-bcr, encoding for the p210-BCR/ABL and b. m-bcr, encoding for the p185-BCR/ABL fusion proteins, respectively. BCR/ABL is the oncogenic driver of Chronic Myeloid Leukemia (CML) and 30% of adult Acute Lymphatic Leukemia (ALL). Activated BCR/ABL kinase is responsible for aberrant activation of multiple signaling pathways, such as JAK/STAT, PI3K/AKT and RAS/MAPK which eventually result in leukemic transformation. Successful targeting of BCR/ABL by selective tyrosine kinase inhibitors (TKIs) such as Imatinib, Nilotinib, Dasatinib and Ponatinib are used for the treatment of Philadelphia chromosome-positive (Ph+) leukemias. Most patients with CML in the early stage (CML-CP) treated with TKIs have increased overall survival. However, TKIs have not been as effective in patients with CML blast crisis (CML-BC) or Ph+ ALL. Point mutations in the tyrosine kinase domain (TKD) of BCR/ABL have emerged as the predominant cause of acquired resistance. These mutations are observed in up to 80% of patients with CML-BC and Ph+ ALL and in ~ 50% of Imatinib-resistant patients. In the remaining 20-50% of patients the mechanism of resistance to TKIs remains elusive. The aim of this study was to investigate the mechanism of non-mutational resistance in Ph+ ALL. Methods: As models for non-mutational resistance, we used patient derived long term cultures (PDLTCs) from Ph+ ALL patients with different levels of non-mutational drug resistance and the SupB15RT, a Ph+ ALL cell-line rendered resistant by exposure to increasing doses of Imatinib and cross-resistant against all approved ABL Kinase Inhibitors (AKIs). Cell proliferation was assessed by XTT/MTT and trypan blue dye exclusion. Signaling pathway proteins were assessed by Western Blot analysis. Chromosomal karyotyping was undertaken on single cell genomes using multi-color FISH (M-FISH) technology. Mutation analysis on the ABL kinase domain was done by sequencing the heminested PCR products obtained from SupB15-WT and SupB15RT cell-lines. Results: A non-mutational resistance cell line SupB15RT, was developed by exposing SupB15 cells to an increasing concentration of Imatinib over a 3 month period. SupB15RT were able to grow in 10 µM Imatinib. SupB15RT cells were karyotypically and mutationaly identical to SupB15 WT. All approved AKIs and allosteric inhibitors like GNF-2, ABL001 and Crizotinib were unable to inhibit growth of these cells, except for Dasatinib (IC50 40nM), a multi-target kinase inhibitor. Experiments to determine the mode of resistance revealed high level (3 fold) of activation of AKT/mTOR enabling these cells to grow and proliferate. We targeted the AKT/mTOR pathway using BKM-120 (PI3 Kinase inhibitor), BEZ-235 (PI3 Kinase and mTOR pathway) and Trorin1/Torin2 (mTORC1 and mTORC2) and found that Torin-1 and Torin-2 significantly inhibited proliferation of SupB15RT, in a dose dependent manner, with an IC50 of 11-20 nM. As Dasatinib alone inhibited growth of SupB15RT cells at 40-50nm concentrations, we combined Dasatinib with Torin1 and found that the combination of these two compounds had an additive inhibitory effect on cell growth. Following this we examined clinical samples from patients. We used three different Ph+ PDLTCs: a. HP (BCR/ABL negative), b. PH (BCR/ABL positive and responsive to TKIs) and c. BV (BCR/ABL positive and non-mutational resistant to TKIs). Interestingly, we found that AKT/mTOR pathway was activated in BV cells and its proliferation was inhibited by Torin1 with IC-50 of 50nM. Conclusion: Our experiments revealed an additional pathway involved in the evolution of non-mutational resistance in Ph+ ALL which could assist in developing novel targeted therapy for Ph+ ALL patient(s) with non-mutational resistance. Disclosures Ottmann: Celgene: Honoraria, Research Funding; Incyte: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Novartis: Honoraria; Takeda: Honoraria; Fusion Pharma: Honoraria; Pfizer: Honoraria; Roche: Honoraria.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1915-1915
Author(s):  
Aline Schmidt-Tanguy ◽  
Annette Romanski ◽  
Mathilde Hunault-Berger ◽  
Oliver G. Ottmann

Abstract The Bcr-Abl oncogene is present in 30–40% of adult patients with acute lymphoblastic leukemia (ALL). The Abl kinase inhibitor imatinib-based therapy has become standard for this subset ALL. Acquired resistance to imatinib occurs frequently and is associated with mutations in the tyrosine kinase domain (TKD) approximately in about 80% of patients. In contrast, TKD mutations are uncommon in primary imatinib resistance which appears to be multifactorial, although the underlying mechanisms have been incompletely elucidated. We have established a Ph+ cell line for the analysis of non-mutational resistance mechanisms of imatinib resistance: SupB15RT, a Bcr-Abl expressing lymphoblastic cell line derived from SupB15WT cell line by gradually increasing the exposure to imatinib. SupB15RT shows cross-resistance to the second generation Abl kinase inhibitors Nilotinib and Dasatinib. We have shown that several commonly implicated mechanisms of imatinib resistance do not play a role in conferring the imatinib resistance in SupB15RT cells. By comparative gene expression analysis of SupB15WT vs. SupB15RT cells using Affymetrix- Microarrays, we identified 29 differentially regulated genes. Autotaxin (ATX) is one of the most highly up-regulated genes in imatinib resistant SupB15RT cells, and suggested a contribution to imatinib resistance. ATX is an exo-enzyme (pyrophosphophatase/phosphodiesterase). It plays a role in tumor progression and migration as a tumor cell autocrine motilty factor in various solid tumor cell types. ATX is involved in the synthesis of the signaling molecule, lysophosphatidic acid (LPA) which promotes survival and motility. It was the aim of this study to determine whereas ATX plays a functional role for imatinib resistance in Ph+ ALL. Using RT-PCR we demonstrated that 2 isoforms of ATX are expressed in SupB15RT cells: ATXshort and ATXlong. ATXlong (863 aa) contains highly basic insertion in the catalytic domain (52 residues). We retroviraly transfected BaF3 cells with p185 and/or ATXshort or ATXlong to analyze its influence on growth, adhesion and migration in mouse cell model. In comparison to wild type BaF3 cells the proliferation of BaF3 cells expressing ATXshort is enhanced (1,5-fold), whereas ATXlong expressing BaF3 cells showed no difference in proliferation in comparison to Mock infected cells. The proliferation of p185 expressing BaF3 cells co-expressing ATXshort or ATXlong is not inhibited by the treatment with 1μM imatinib after 3 days in contrast to p185 expressing BaF3 cells. In adhesion experiments, BaF3 cells expressing ATXshort showed a higher attachment independent of p185 expression. We also performed migration experiments using transwell assays. These assays showed more migration with cells co-expressing p185 and ATXlong compared to p185 alone. This is in agreement with our results for SupB15RT vs. SupB15WT with a 3-fold migration increase of SupB15RT. Application of 10% fetal calf serum (FCS) in migration experiments resulted in a 1,5-fold higher migration of the ATXlong expressing BaF3 cells compared to culture without FCS. One explanation for this finding may be that FCS contains lysophosphatidic choline (LPC) which is converted to LPA by ATX. Although expression of both 2 isoforms of ATX is important for the increased proliferation, it seems that the 2 isoforms have different cellular functions in Ph+ lymphoblastic cells. ATXshort seems to enhance adhesion whereas ATXlong plays an important role in motility. Taken together our results indicate a role for ATX in TK- inhibitor resistant SupB15RT cells through LPA signaling via LPA receptors. The ratio between ATXshort and ATXlong probably is important for the intracellular signaling and has to be explored.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 925-932 ◽  
Author(s):  
Michael C. Heinrich ◽  
Diana J. Griffith ◽  
Brian J. Druker ◽  
Cecily L. Wait ◽  
Kristen A. Ott ◽  
...  

Abstract STI 571 (formerly known as CGP 57148B) is a known inhibitor of the c-abl, bcr-abl, and platelet-derived growth-factor receptor (PDGFR) tyrosine kinases. This compound is being evaluated in clinical trials for the treatment of chronic myelogenous leukemia. We sought to extend the activity profile of STI 571 by testing its ability to inhibit the tyrosine kinase activity of c-kit, a receptor structurally similar to PDGFR. We treated a c-kit expressing a human myeloid leukemia cell line, M-07e, with STI 571 before stimulation with Steel factor (SLF). STI 571 inhibited c-kit autophosphorylation, activation of mitogen-activated protein (MAP) kinase, and activation of Akt without altering total protein levels of c-kit, MAP kinase, or Akt. The concentration that produced 50% inhibition for these effects was approximately 100 nmol/L. STI 571 also significantly decreased SLF-dependent growth of M-07e cells in a dose-dependent manner and blocked the antiapoptotic activity of SLF. In contrast, the compound had no effect on MAP kinase activation or cellular proliferation in response to granulocyte-macrophage colony-stimulating factor. We also tested the activity of STI 571 in a human mast cell leukemia cell line (HMC-1), which has an activated mutant form of c-kit. STI 571 had a more potent inhibitory effect on the kinase activity of this mutant receptor than it did on ligand-dependent activation of the wild-type receptor. These findings show that STI 571 selectively inhibits c-kit tyrosine kinase activity and downstream activation of target proteins involved in cellular proliferation and survival. This compound may be useful in treating cancers associated with increased c-kit kinase activity.


Sign in / Sign up

Export Citation Format

Share Document