W1696 Type-2 Il4 Receptor(IL-4r) Plays a Pivotal Role in Regulating the Hypercontractile Smooth Muscle Response to Nematode Infection

2009 ◽  
Vol 136 (5) ◽  
pp. A-719
Author(s):  
Rex Sun ◽  
Aiping Zhao ◽  
Jennifer A. Stiltz ◽  
Kathleen B. Madden ◽  
Joseph F. Urban ◽  
...  
2016 ◽  
Vol 84 (12) ◽  
pp. 3328-3337 ◽  
Author(s):  
Chenlin Pei ◽  
Chao Zhao ◽  
An-Jiang Wang ◽  
Anya X. Fan ◽  
Viktoriya Grinchuk ◽  
...  

Infection with parasitic nematodes, especially gastrointestinal geohelminths, affects hundreds of millions of people worldwide and thus poses a major risk to global health. The host mechanism of defense against enteric nematode infection remains to be fully understood, but it involves a polarized type 2 immunity leading to alterations in intestinal function that facilitate worm expulsion. We investigated the role of interleukin-25 (IL-25) in host protection against Heligmosomoides polygyrus bakeri infection in mice. Our results showed that Il25 and its receptor subunit, Il17rb , were upregulated during a primary infection and a secondary challenge infection with H. polygyrus bakeri . Genetic deletion of IL-25 (IL-25 −/− ) led to an attenuated type 2 cytokine response and increased worm fecundity in mice with a primary H. polygyrus bakeri infection. In addition, the full spectrum of the host memory response against a secondary infection with H. polygyrus bakeri was severely impaired in IL-25 −/− mice, including delayed type 2 cytokine responses, an attenuated functional response of the intestinal smooth muscle and epithelium, diminished intestinal smooth muscle hypertrophy/hyperplasia, and impaired worm expulsion. Furthermore, exogenous administration of IL-25 restored the host protective memory response against H. polygyrus bakeri infection in IL-25 −/− mice. These data demonstrate that IL-25 is critical for host protective immunity against H. polygyrus bakeri infection, highlighting its potential application as a therapeutic agent against parasitic nematode infection worldwide.


2001 ◽  
Vol 120 (5) ◽  
pp. A534-A534
Author(s):  
A ZHAO ◽  
D MULLOY ◽  
J URBANJR ◽  
W GAUSE ◽  
T SHEADONOHUE

2013 ◽  
Vol 45 (2) ◽  
pp. 375-383 ◽  
Author(s):  
Zhaoxia Wang ◽  
Weidong Wu ◽  
Maoping Tang ◽  
Ying Zhou ◽  
Lianyun Wang ◽  
...  

2009 ◽  
Vol 297 (5) ◽  
pp. C1307-C1317 ◽  
Author(s):  
Haifa A. Madi ◽  
Kirsten Riches ◽  
Philip Warburton ◽  
David J. O'Regan ◽  
Neil A. Turner ◽  
...  

Individuals with Type 2 diabetes mellitus (T2DM) are at increased risk of saphenous vein (SV) graft stenosis following coronary artery bypass. Graft stenosis is caused by intimal hyperplasia, a pathology characterized by smooth muscle cell (SMC) proliferation and migration. We hypothesized that SV-SMC from T2DM patients were intrinsically more proliferative and migratory than those from nondiabetic individuals. SV-SMC were cultured from nondiabetic and T2DM patients. Cell morphology (light microscopy, immunocytochemistry), S100A4 expression (real-time RT-PCR, immunoblotting), proliferation (cell counting), migration (Boyden chamber assay), and cell signaling (immunoblotting with phosphorylation state-specific antibodies) were studied. SV-SMC from T2DM patients were morphologically distinct from nondiabetic patients and exhibited a predominantly rhomboid phenotype, accompanied by disrupted F-actin cytoskeleton, disorganized α-smooth muscle actin network, and increased focal adhesion formation. However, no differences were observed in expression of the calcium-binding protein S100A4, a marker of rhomboid SMC phenotype, between the two cell populations. T2DM cells were less proliferative in response to fetal calf serum than nondiabetic cells, but both populations had similar proliferative responses to insulin plus PDGF. Under high glucose concentration conditions in the presence of insulin, migration of diabetic SV-SMC was greater than nondiabetic cells. Glucose concentration did not affect SV-SMC proliferation. No differences in insulin or PDGF-induced phosphorylation of ERK-1/2 or components of the Akt pathway (Akt-Ser473, Akt-Thr308, and GSK-3β) were apparent between the two populations. In conclusion, SV-SMC from T2DM patients differ from nondiabetic SV-SMC in that they exhibit a rhomboid phenotype and are more migratory, but less proliferative, in response to serum.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Malvyne Rolli‐Derkinderen ◽  
Christophe Guilluy ◽  
Laurent Loufrani ◽  
Daniel Henrion ◽  
Gervaise Loirand ◽  
...  

2020 ◽  
Vol 6 (4) ◽  
pp. 00147-2020
Author(s):  
Sangeetha Ramu ◽  
Jenny Calvén ◽  
Charalambos Michaeloudes ◽  
Mandy Menzel ◽  
Hamid Akbarshahi ◽  
...  

BackgroundAsthma exacerbations are commonly associated with rhinovirus (RV) infection. Interleukin-33 (IL-33) plays an important role during exacerbation by enhancing Type 2 inflammation. Recently we showed that RV infects bronchial smooth muscle cells (BSMCs) triggering production of interferons and IL-33. Here we compared levels of RV-induced IL-33 in BSMCs from healthy and asthmatic subjects, and explored the involvement of pattern-recognition receptors (PRRs) and downstream signalling pathways in IL-33 expression.MethodBSMCs from healthy and severe and non-severe asthmatic patients were infected with RV1B or stimulated with the PRR agonists poly(I:C) (Toll-like receptor 3 (TLR3)), imiquimod (TLR7) and poly(I:C)/LyoVec (retinoic acid-inducible gene 1 (RIG-I)/melanoma differentiation-associated protein 5 (MDA5)). Knockdown of TLR3, RIG-I and MDA5 was performed, and inhibitors targeting TBK1, nuclear factor-κB (NF-κB) and transforming growth factor (TGF)-β-activated kinase 1 (TAK1) were used. Gene and protein expression were assessed.ResultsRV triggered IL-33 gene and protein expression in BSMCs. BSMCs from patients with non-severe asthma showed higher baseline and RV-induced IL-33 gene expression compared to cells from patients with severe asthma and healthy controls. Furthermore, RV-induced IL-33 expression in BSMCs from healthy and asthmatic individuals was attenuated by knockdown of TLR3. Inhibition of TAK1, but not NF-κB or TBK1, limited RV-induced IL-33. The cytokine secretion profile showed higher production of IL-33 in BSMCs from patients with non-severe asthma compared to healthy controls upon RV infection. In addition, BSMCs from patients with non-severe asthma had higher levels of RV-induced IL-8, TNF-α, IL-1β, IL-17A, IL-5 and IL-13.ConclusionRV infection caused higher levels of IL-33 and increased pro-inflammatory and Type 2 cytokine release in BSMCs from patients with non-severe asthma. RV-induced IL-33 expression was mainly regulated by TLR3 and downstream via TAK1. These signalling molecules represent potential therapeutic targets for treating asthma exacerbations.


1991 ◽  
Vol 144 (2) ◽  
pp. 373-378 ◽  
Author(s):  
Steven R. White ◽  
Darren P. Hathaway ◽  
Jason G. Umans ◽  
Julio Tallet ◽  
Cyril Abrahams ◽  
...  

1993 ◽  
Vol 75 (5) ◽  
pp. 2013-2021 ◽  
Author(s):  
P. Chitano ◽  
S. B. Sigurdsson ◽  
A. J. Halayko ◽  
N. L. Stephens

To investigate heterogeneity of airway smooth muscle response, we studied strips of large and small branches from third- to sixth-generation bronchi obtained from ragweed antigen-sensitized and control dogs. The response to electrical field stimulation and carbamylcholine chloride was greater in strips from larger branches of the same generation when expressed as "tissue stress" (force per unit cross-sectional area of the whole tissue), whereas no difference emerged with use of the more appropriate "smooth muscle stress" (force per unit cross-sectional area of the muscle tissue). The response to histamine was significantly higher in small branches than in large ones, and histamine sensitivity [mean effective concentration (EC50)] was 7.79 x 10(-6) [geometric standard error of the mean (GSEM) 1.20] and 1.49 x 10(-5) M (GSEM 1.14), respectively (P < 0.01). Strips from control and sensitized animals at each site and strips from different generations did not show any significant difference. When we clustered our preparations according to dimensions, the response to histamine was significantly higher in small bronchi than in large ones and histamine EC50 was 8.95 x 10(-6) (GSEM 1.17) and 1.57 x 10(-5) M (GSEM 1.18), respectively (P < 0.05). We conclude that evaluation of muscle response in different tissues requires appropriate normalization. Furthermore, classification into generations is inadequate to study bronchial responsiveness, inasmuch as major differences originate from airway size.


Sign in / Sign up

Export Citation Format

Share Document