Mo1072 EARLY MONITORING OF PLASMA METHYLATED SEPTIN 9 BY DROPLET DIGITAL POLYMERASE CHAIN REACTION IN PATIENTS WITH COLORECTAL CANCER

2020 ◽  
Vol 158 (6) ◽  
pp. S-779
Author(s):  
Zhiyao Ma ◽  
Dominic ◽  
Chi-chung Foo ◽  
Cherry S. Chan ◽  
KS Lau ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhi Yao Ma ◽  
Cherry Sze Yan Chan ◽  
Kam Shing Lau ◽  
Lui Ng ◽  
Yuen Yee Cheng ◽  
...  

AbstractMethylated septin 9 (SEPT9) has been approved for non-invasive screening of colorectal cancer (CRC), but data on monitoring of CRC is sparse. Droplet digital polymerase chain reaction (ddPCR), with higher detection precision and simpler quantification than conventional PCR, has not been applied in SEPT9 detection. We explored the role of SEPT9 ddPCR for CRC detection and to measure serial SEPT9 levels in blood samples of CRC patients before and 3-month after surgery. SEPT9 methylated ratio, methylated abundance, and CEA levels were all higher in CRC patients than normal controls (all P < 0.05). The area under the curve (AUC) for methylated ratio and abundance to detect CRC was 0.707 and 0.710, respectively. There was an increasing trend for SEPT9 methylated abundance from proximal to distal cancers (P = 0.017). At 3-month after surgery, both methylated abundance and ratio decreased (P = 0.005 and 0.053, respectively), especially methylated abundance in stage III and distal cancer (both P < 0.01). We have developed a ddPCR platform for the quantitative detection of plasma SEPT9 in CRC patients. SEPT9 methylated abundance had an early post-operative decline, which may be useful in monitoring of treatment response.


Author(s):  
Jing Xu ◽  
Timothy Kirtek ◽  
Yan Xu ◽  
Hui Zheng ◽  
Huiyu Yao ◽  
...  

Abstract Objectives The Bio-Rad SARS-CoV-2 ddPCR Kit (Bio-Rad Laboratories) was the first droplet digital polymerase chain reaction (ddPCR) assay to receive Food and Drug Administration (FDA) Emergency Use Authorization approval, but it has not been evaluated clinically. We describe the performance of ddPCR—in particular, its ability to confirm weak-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results. Methods We clinically validated the Bio-Rad Triplex Probe ddPCR Assay. The limit of detection was determined by using serial dilutions of SARS-CoV-2 RNA in an artificial viral envelope. The ddPCR assay was performed according to the manufacturer’s specifications on specimens confirmed to be positive (n = 48) or negative (n = 30) by an FDA-validated reverse transcription–polymerase chain reaction assay on the m2000 RealTime system (Abbott). Ten borderline positive cases were also evaluated. Results The limit of detection was 50 copies/mL (19 of 20 positive). Forty-seven specimens spanning a range of quantification cycles (2.9-25.9 cycle numbers) were positive by this assay (47 of 48; 97.9% positive precent agreement), and 30 negative samples were confirmed as negative (30 of 30; 100% negative percent agreement). Nine of 10 borderline cases were positive when tested in triplicate. Conclusions The ddPCR of SARS-CoV-2 is an accurate method, with superior sensitivity for viral RNA detection. It could provide definitive evaluation of borderline positive cases or suspected false-negative cases.


2021 ◽  
Vol 11 (3) ◽  
pp. 373-379
Author(s):  
Huitao Li ◽  
Xueyu Chen ◽  
Xiaomei Qiu ◽  
Weimin Huang ◽  
Chuanzhong Yang

Invasive fungal infection (IFI) is the leading cause of death in neonatal patients, yet the diagnosis of IFI remains a major challenge. At present, most IFI laboratory diagnostic methods are based on classical, but limited, methods such as fungal isolation and culture and histopathological examination. Recently, quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) technology have been adopted to quantify nucleic-acid identification. In this study, we established qPCR and ddPCR assays for IFI diagnosis and quantification. qPCR and ddPCR were carried out using identical primers and probe for the amplification of 18S rRNA. Assay results for three fungal strains were positive, whereas ten non-fungal strains had negative results, indicating 100% specificity for both ddPCR and qPCR methods. Genomic DNA of Candida albicans was tested after a serial dilution to compare the sensitivity of the two PCR methods. The limit of detection of ddPCR was 3.2 copies/L, which was a ten-fold increase compared with that of the qPCR method (32 copies/L). Blood samples from 127 patients with high-risk factors and clinical symptoms for IFI were collected from a NICU in Shenzhen, China, and analyzed using qPCR and ddPCR. Thirty-four blood samples from neonates had a proven or probable diagnosis of IFI, and 25 of these were positive by qPCR, whereas 30 were positive by ddPCR. Among the 93 blood samples from neonates who had a possible IFI or no IFI, 24 were positive using qPCR, and 7 were positive using ddPCR. In conclusion, ddPCR is a rapid and accurate pan-fungal detection method and provides a promising prospect for IFI clinical screening.


Sign in / Sign up

Export Citation Format

Share Document