Synthesis and characterization of mononuclear complexes containing 3-acetylamino-1,2,4-triazole (aat). X-ray structure of [Co(aat)2(H2O)2]Br2

1993 ◽  
Vol 209 (2) ◽  
pp. 219-223 ◽  
Author(s):  
Marina Biagini Cingi ◽  
Maurizio Lanfranchi ◽  
Anna Maria Manotti Lanfredi ◽  
Sacramento Ferrer ◽  
Jaap G. Haasnoot ◽  
...  
2018 ◽  
Vol 74 (10) ◽  
pp. 1116-1122
Author(s):  
Pheello I. Nkoe ◽  
Hendrik G. Visser ◽  
Chantel Swart ◽  
Alice Brink ◽  
Marietjie Schutte-Smith

The synthesis and characterization of two dinuclear complexes, namelyfac-hexacarbonyl-1κ3C,2κ3C-(pyridine-1κN)[μ-2,2′-sulfanediyldi(ethanethiolato)-1κ2S1,S3:2κ3S1,S2,S3]dirhenium(I), [Re2(C4H8S3)(C5H5N)(CO)6], (1), and tetraethylammoniumfac-tris(μ-2-methoxybenzenethiolato-κ2S:S)bis[tricarbonylrhenium(I)], (C8H20N)[Re2(C7H7OS)3(CO)6], (2), together with two mononuclear complexes, namely (2,2′-bithiophene-5-carboxylic acid-κ2S,S′)bromidotricarbonylrhenium(I), (3), and bromidotricarbonyl(methyl benzo[b]thiophene-2-carboxylate-κ2O,S)rhenium(I), (4), are reported. Crystals of (1) and (2) were characterized by X-ray diffraction. The crystal structure of (1) revealed two Re—S—Re bridges. The thioether S atom only bonds to one of the ReImetal centres, while the geometry of the second ReImetal centre is completed by a pyridine ligand. The structure of (2) is characterized by three S-atom bridges and an Re...Re nonbonding distance of 3.4879 (5) Å, which is shorter than the distance found for (1) [3.7996 (6)/3.7963 (6) Å], but still clearly a nonbonding distance. Complex (1) is stabilized by six intermolecular hydrogen-bond interactions and an O...O interaction, while (2) is stabilized by two intermolecular hydrogen-bond interactions and two O...π interactions.


2021 ◽  
Vol 33 (9) ◽  
pp. 2157-2161
Author(s):  
F.M. Nareetsile ◽  
R. Gontse ◽  
O.A. Oyetunji ◽  
V.C. Obuseng

Hexadentate ligand of the type N,N,N′,N′-tetrakis(2-pyridylmethyl)alkanediamine (where alkane is butane (L1), hexane (L2) and octane (L3) reacted with Ni(ClO4)2·6H2O (stoichiometry 1:1) in alcoholic solutions yielding mononuclear complexes of the type [Ni(L)](ClO4)2·xH2O. The ligand L1 reacted with Ni(ClO4)2·6H2O in ethanol medium to give a violet powder of [Ni(L1)](ClO4)2·3H2O. The other mononuclear nickel(II) complexes using L2 and L3 were synthesized in methanol solution to give violet powders of [Ni(L2)](ClO4)2·2H2O and [Ni(L3)](ClO4)2·2H2O, respectively. All the three complexes were characterized by IR and elemental analysis. The X-ray crystallographic results for the purple crystals of [Ni(L1)](ClO4)2·3H2O shows the octahedral geometry on the Ni(II) ions together with the tetrahedral perchlorate anions separated from the [Ni(L1)]2+ cation. The crystal structure data show monoclinic space group P 21/c; a = 17.1748(10), b = 9.8273(6), c = 17.8146(10) Å; α = 90º, β = 95.0200(10)º, γ = 90º; V = 2995.2(3) Å3 , Z = 4.


2018 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
S Chirino ◽  
Jaime Diaz ◽  
N Monteblanco ◽  
E Valderrama

The synthesis and characterization of Ti and TiN thin films of different thicknesses was carried out on a martensitic stainless steel AISI 410 substrate used for tool manufacturing. The mechanical parameters between the interacting surfaces such as thickness, adhesion and hardness were measured. By means of the scanning electron microscope (SEM) the superficial morphology of the Ti/TiN interface was observed, finding that the growth was of columnar grains and by means of EDAX the existence of titanium was verified.  Using X-ray diffraction (XRD) it was possible to observe the presence of residual stresses (~ -3.1 GPa) due to the different crystalline phases in the coating. Under X-ray photoemission spectroscopy (XPS) it was possible to observe the molecular chemical composition of the coating surface, being Ti-N, Ti-N-O and Ti-O the predominant ones.


2020 ◽  
Vol 10 ◽  
pp. 184798042096688
Author(s):  
Galo Cárdenas-Triviño ◽  
Sergio Triviño-Matus

Metal colloids in 2-mercaptoethanol using nanoparticles (NPs) of iron (Fe), cobalt (Co), and nickel (Ni) were prepared by chemical liquid deposition method. Transmission electron microscopy, electron diffraction, UV-VIS spectroscopy, and scanning electron microscopy with electron dispersive X-ray spectroscopy characterized the resulting colloidal dispersions. The NPs exhibited sizes with ranges from 9.8 nm for Fe, 3.7 nm for Co, and 7.2 nm for Ni. The electron diffraction shows the presence of the metals in its elemental state Fe (0), Co (0), and Ni (0) and also some compounds FeO (OH), CoCo2S4, and NiNi2S4.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 721 ◽  
Author(s):  
Jorge A. Ramírez-Gómez ◽  
Javier Illescas ◽  
María del Carmen Díaz-Nava ◽  
Claudia Muro-Urista ◽  
Sonia Martínez-Gallegos ◽  
...  

Atrazine (ATZ) is an herbicide which is applied to the soil, and its mechanism of action involves the inhibition of photosynthesis. One of its main functions is to control the appearance of weeds in crops, primarily in corn, sorghum, sugar cane, and wheat; however, it is very toxic for numerous species, including humans. Therefore, this work deals with the adsorption of ATZ from aqueous solutions using nanocomposite materials, synthesized with two different types of organo-modified clays. Those were obtained by the free radical polymerization of 4-vinylpyridine (4VP) and acrylamide (AAm) in different stoichiometric ratios, using tetrabutylphosphonium persulfate (TBPPS) as a radical initiator and N,N′-methylenebisacrylamide (BIS) as cross-linking agent. The structural, morphological, and textural characteristics of clays, copolymers, and nanocomposites were determined through different analytical and instrumental techniques, i.e., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption kinetics experiments of ATZ were determined with the modified and synthesized materials, and the effect of the ratio between 4VP and AAm moieties on the removal capacities of the obtained nanocomposites was evaluated. Finally, from these sets of experiments, it was demonstrated that the synthesized nanocomposites with higher molar fractions of 4VP obtained the highest removal percentages of ATZ.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 597-603
Author(s):  
Birgit Fuchs ◽  
Hubert Huppertz

AbstractThe non-centrosymmetric scandium borate ScB6O9(OH)3 was obtained through a high-pressure/high-temperature experiment at 6 GPa and 1473 K. Single-crystal X-ray diffraction revealed that the structure is isotypic to InB6O9(OH)3 containing borate triple layers separated by scandium layers. The compound crystallizes in the space group Fdd2 with the lattice parameters a = 38.935(4), b = 4.4136(4), and c = 7.6342(6) Å. Powder X-ray diffraction and vibrational spectroscopy were used to further characterize the compound and verify the proposed structure solution.


2009 ◽  
Vol 13 (02) ◽  
pp. 223-234 ◽  
Author(s):  
Tomasz Goslinski ◽  
Ewa Tykarska ◽  
Wojciech Szczolko ◽  
Tomasz Osmalek ◽  
Aleksandra Smigielska ◽  
...  

The condensation reaction of 2-amino-3-[(3-pyridylmethyl)amino]-2(Z)-butene-1,4-dinitrile with a series of diketones led to novel dinitriles, of which 2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-[methyl(3-pyridylmethylene)amino]-2(Z)-butene-1,4-dinitrile, the product of the Paal-Knorr reaction, was successfully utilized in the Linstead macrocyclization towards symmetrical and unsymmetrical porphyrazines. NMR and X-ray study revealed an almost perpendicular orientation of the pyrrolyl groups in relation to the porphyrazine platform. The newly synthesized macrocycles with different peripheral groups show interesting spectroscopic and electrochemical properties. Due to selective sensor/coordination properties they are expected to find applications as chemical sensors and electronic materials.


2013 ◽  
Vol 594-595 ◽  
pp. 73-77 ◽  
Author(s):  
Sze Mei Chin ◽  
Suriati Sufian ◽  
Jeefferie Abd Razak

This paper highlights on the hydrogen production through photocatalytic activity by using hematite nanoparticles synthesized from self-combustion method based on different stirring period. The morphologies and microstructures of the nanostructures were determined using Field-Emission Scanning Electron Microscope (FESEM), X-Ray Diffractometer (XRD) and Particle Size Analyser (PSA). Besides that, surface area analyser was used to determine the BET surface area of the hematite samples. The hematite nanocatalyst as-synthesized are proven to be rhombohedral crystalline hematite (α-Fe2O3) with particle diameters ranging from 60-140 nm. The BET specific surface area of hematite samples increased from 5.437 to 7.6425 m2/g with increasing stirring period from 1 to 4 weeks. This caused the amount of hydrogen gas produced from photocatalytic water splitting to increase as well.


Sign in / Sign up

Export Citation Format

Share Document