scholarly journals Prostaglandin 9-hydroxydehydrogenase activity in the adult rat kidney. Identification, assay, pathway, and some enzyme properties.

1975 ◽  
Vol 250 (8) ◽  
pp. 2789-2794
Author(s):  
C Pace-Asciak
2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Natalia O. Litbarg ◽  
Snezana Vujicic ◽  
Suman Setty ◽  
Periannan Sethupathi ◽  
George Dunea ◽  
...  

1979 ◽  
Vol 121 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Jules Berman ◽  
Alan Perantoni ◽  
Hester Marie Jackson ◽  
Elizabeth Kingsbury

1997 ◽  
Vol 273 (3) ◽  
pp. F386-F395 ◽  
Author(s):  
M. E. Choi ◽  
A. Liu ◽  
B. J. Ballermann

Transforming growth factor-beta 1 (TGF-beta 1) is strongly expressed during embryogenesis and in sites undergoing intense development and morphogenesis. Two receptor serine/threonine kinases (types I and II) have been identified as signal-transducing TGF-beta receptors. This study was undertaken to further explore the role of the distinct TGF-beta receptors during kidney development. The species-specific sequence information for the two T beta R-I, namely, activin receptor-like kinase-5 (ALK-5) and Tsk7L, in the rat was sought. Two full-length T beta R-I cDNAs were cloned from a neonatal rat kidney and lung libraries, and sequencing revealed that they were the rat homologs of human ALK-5 and murine Tsk7L. Both types I and II TGF-beta receptors are expressed in the kidney as determined by Northern blot analysis. T beta R-II mRNA abundance was significantly greater in the neonatal rat kidney compared with the adult rat kidney. Similarly, ALK-5 mRNA was more highly expressed in the fetal and neonatal rat kidney than the adult rat kidney. In contrast, there was no significant difference in Tsk7L mRNA abundance among the fetal, neonatal, and adult rat kidney. Thus, based on these findings, both T beta R-II and ALK-5 are developmentally regulated in the kidney. Increased expression of T beta R-II and ALK-5 proteins in the developing kidney was confirmed by immunohistochemistry. Interestingly, the two TGF-beta receptors did not entirely colocalize, raising the intriguing possibility that other TGF-beta signaling receptors may be involved.


Author(s):  
Brittney M. Rush ◽  
Sarah A Small ◽  
Donna B. Stolz ◽  
Roderick J. Tan
Keyword(s):  

1994 ◽  
Vol 266 (5) ◽  
pp. F738-F745 ◽  
Author(s):  
S. Holmer ◽  
B. Rinne ◽  
K. U. Eckardt ◽  
M. Le Hir ◽  
K. Schricker ◽  
...  

Utilizing a combination of mechanical and chemical unilateral denervation, we have examined the relevance of renal innervation for the expression of renin in kidneys of adult rats. Renal denervation led to a reduction by 57 +/- 4% of renin-containing areas in denervated kidneys as quantitated by morphometry of kidney sections immunoreactive against a polyclonal antirenin antibody. Preprorenin mRNA content in the denervated kidneys fell to 46 +/- 7% of the contralateral innervated kidneys. Treatment of rats with the beta 1-adrenoreceptor antagonist metoprolol (100 mg.kg-1.day-1) for 2 days decreased renal renin mRNA levels to 71% of control levels. Unilateral renal denervation led to a further decrease of renin mRNA levels also in metoprolol-treated animals to 60% of the values found in the contralateral kidneys. Hypotensive hemorrhage led to a 1.4-fold increase of renin mRNA in the kidneys of sham-treated animals. In unilaterally denervated rats renin mRNA increased to levels similar to those in sham-operated animals in both denervated and in contralateral innervated kidneys in response to bleeding. As a consequence, the ratio of abundance of renin mRNA in the denervated to the innervated kidneys rose to 86 +/- 7%. Pretreatment of the animals with metoprolol, on the other hand, prevented the rise of renin mRNA in response to hypotensive hemorrhage. Our findings suggest that in the adult organism renal neural input significantly contributes to the expression of renin under basal conditions, while it appears to be of less importance for stimulation of renin gene expression by severe blood loss.


1977 ◽  
Vol 233 (3) ◽  
pp. F241-F246
Author(s):  
K. S. Roth ◽  
S. M. Hwang ◽  
J. W. London ◽  
S. Segal

Isolated renal tubule preparations were made from newborn Sprague-Dawley rats and used to study initial entry rate kinetics of glycine. The results were compared to those obtained in the isolated tubule preparation from the adult rat kidney. While initial rates of glycine uptake were identical for newborn and adult tubules, significant differences in influx kinetics were demonstrated. Of the two apparent transport Km systems shown to be present in the newborn tubule, the high-affinity, low-capacity system accounts for about 40% of total glycine uptake at physiologic concentrations. The high-affinity, low-capacity system of the adult tissue accounts for about 10% of total uptake at the same concentration range. The data lend strength to the argument against the concept that the physiologic hyperglycinuria of the newborn rat is due to either impaired ability to concentrate glycine intracellularly or to absence of one or more transport mechanisms for glycine.


1992 ◽  
Vol 287 (3) ◽  
pp. 691-694 ◽  
Author(s):  
J H Baik ◽  
S Siegrist ◽  
G Giuili ◽  
O Lahuna ◽  
F Bulle ◽  
...  

We have investigated, using DNA methylation patterning, the site-specific methylation of promoters I and II of the rat gamma-glutamyl transpeptidase gene. This analysis was done in fetal, newborn and adult rat kidney, in which promoters I and II are progressively active during development, as well as in rat liver, which never expresses mRNAs from these two promoters. During kidney development, a progressive demethylation occurs in the promoter I and II region, specially at the level of the most proximal MspI site of promoter II. A progressive reorganization of the methylated sites within the 5′ end of the gene also occurs during liver development.


1998 ◽  
Vol 46 (9) ◽  
pp. 1025-1032 ◽  
Author(s):  
Pangala V. Bhat ◽  
Mieczyslaw Marcinkiewicz ◽  
Yuan Li ◽  
Sylvie Mader

We have recently characterized a cytosolic aldehyde dehydrogenase from rat kidney that functions as a retinal dehydrogenase (RALDH) and have cloned the corresponding gene. RALDH catalyzes the oxidation of retinal to retinoic acid, which regulates cell growth and differentiation by activating retinoic acid receptors. In situ hybridization demonstrates that RALDH mRNA expression is prominent in kidney in 2-day-old rats, is detected in lung and in epithelia of several tissues, but is not found in liver tissue. Retinal dehydrogenase activity peaks in kidney at Day 2 after birth and decreases gradually until adulthood, correlating well with RALDH expression. Weaker activity is also detectable in lungs but not in liver. Notably, distribution patterns of RALDH in kidney tissues are dramatically altered during postnatal development (P). From P0 to P6, hybridization is essentially concentrated within the marginal nephrogenic zone of the cortex. Expression progresses to deeper cortical layers from P12 to P16 and is intense in the medulla at P42, and focal expression is still detectable in the cortex. Immunocytochemical localization of RALDH in neonatal kidney shows staining mostly in cortical zone convoluted tubules and in adult rat shows staining in segments of distal and proximal tubules. These data suggest an important role for RALDH in modulating retinoic acid levels in different cell types during rat kidney development. The changing patterns of RALDH expression mirror stages of nephron formation in the developing rat kidney, strongly suggesting a central role for RALDH and thus for retinoids in controlling kidney development.


Nephrology ◽  
1995 ◽  
Vol 1 (6) ◽  
pp. 547-553 ◽  
Author(s):  
Amander T CLARK ◽  
Miriam D FORD ◽  
Victor NURCOMBE ◽  
Daine ALCORN ◽  
Brian KEY ◽  
...  

1990 ◽  
Vol 38 (10) ◽  
pp. 1479-1486 ◽  
Author(s):  
K J McCarthy ◽  
J R Couchman

Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution of epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan sulfate proteoglycans previously described.


Sign in / Sign up

Export Citation Format

Share Document