scholarly journals 3-Deazaadenosine inhibits thrombin-stimulated platelet-derived growth factor production and endothelial-leukocyte adhesion molecule-1-mediated monocytic cell adhesion in human aortic endothelial cells.

1992 ◽  
Vol 267 (13) ◽  
pp. 9376-9382
Author(s):  
R Shankar ◽  
C.A. de la Motte ◽  
P.E. DiCorleto
Blood ◽  
1986 ◽  
Vol 67 (1) ◽  
pp. 131-134
Author(s):  
KS Callahan ◽  
A Schorer ◽  
JM Harlan

We examined the effect of highly purified platelet-derived growth factor (PDGF) on prostacyclin (PGI2) release by cultured human umbilical vein and bovine aortic endothelial cells. PDGF tested at concentrations equal to or exceeding those observed in serum did not increase endothelial cell PGI2 synthesis as measured by radioimmunoassay of its metabolite, 6-keto-PGF1 alpha. In contrast, cells incubated with 20% human whole blood serum (WBS) demonstrated significantly increased PGI2 production (fivefold stimulation). Addition of anti-PDGF antibody to the 20% WBS did not attenuate the increased synthesis of PGI2. Incubation with 20% plasma-derived serum (PDS) that was deficient in PDGF produced stimulation of PGI2 release similar to 20% WBS. These results demonstrate that PDGF does not cause increased PGI2 synthesis in cultured human endothelial cells of human or bovine origin, and further suggest that the stimulation observed with serum is not due to a platelet-release product.


1993 ◽  
Vol 265 (1) ◽  
pp. H3-H8 ◽  
Author(s):  
M. Mitsumata ◽  
R. S. Fishel ◽  
R. M. Nerem ◽  
R. W. Alexander ◽  
B. C. Berk

Fluid flow and the associated shear stress play a critical role in vascular growth and remodeling. Recent data suggest that increased endothelial cell expression of platelet-derived growth factor (PDGF) A- and B-chain by flow may participate in these events. In the present study, we examined the mechanism for flow-induced PDGF expression, focusing on protein kinase C (PKC). Bovine aortic endothelial cells were exposed to flow (shear stress = 30 dyn/cm2) in a parallel-plate flow chamber. Increases in PDGF B-chain, but not PDGF A-chain, were observed within 3 h, maximal within 6 h (13-fold increase), and sustained for 24 h. PKC appeared to be involved because phorbol 12-myristate 13-acetate induced PDGF B-chain mRNA. Activation of PKC alone, however, was insufficient to induce PDGF mRNA because the selective PKC activator, 1-oleoyl-2-acetyl-sn-glycerol, did not induce PDGF expression. A PKC-independent pathway was suggested by the fact that inhibition of PKC (downregulation with phorbol 12,13-dibutyrate or exposure to staurosporine) failed to block PMA or flow-induced PDGF B-chain expression. These results demonstrate flow-induced PDGF B-chain expression in endothelial cells that appears to be mediated, in part, by a PKC-independent pathway.


Author(s):  
Andrew M. Walker ◽  
Kogan Lee ◽  
Kristina D. Rinker ◽  
Robert D. Shepherd ◽  
Gary M. Dobson ◽  
...  

The intravenous fluid of choice for acute blood volume replacement remains controversial. We focus here on the two hydroxyethyl (HES) available in Canada: HES 130/0.40 (Voluven®) and HES 260/0.45 (Pentaspan®). Although information regarding their pharmacokinetic and risk/benefit profiles are available, how the infusion of these fluids could affect blood viscosity and vascular endothelial function in humans is largely unknown. Dynamic viscosity was measured at 21°C and 37°C through capillary viscometry. The HES solutions were driven through a closed flow loop at room temperature (21°C). Viscosity at 21°C was 7.62 centipoise (cP) for HES 260/0.45 and 2.73 cP for HES 130/0.40 decreasing to 4.23 cP for HES 260/0.45 and 1.72 cP for HES 130/0.40 at 37°C. Analysis of viscous behaviour through pipe flow found that HES 260/0.45 displayed marginal variations in viscosity suggesting Newtonian behaviour across our range of Re measured. HES 130/0.40 displayed an appreciable increase in viscosity at higher Re suggesting the presence of shear thickening behaviour. Human aortic endothelial cells (HAEC) and human microvascular endothelial cells (HMVEC) were exposed to the HES solutions and saline to identify chemical effects on vascular endothelium. Western blot quantification showed that E-selectin was the leukocyte adhesion receptor that was most strongly affected, and this was not dose dependent. Interestingly, HAEC and HMVEC had different responses to HES treatment, suggesting that different vascular tissues may have different outcomes to HES infusion. Protein expression in HMVEC decreased when exposed to both HES solutions.


Sign in / Sign up

Export Citation Format

Share Document