scholarly journals Mechanism of export of outer membrane lipoproteins through the cytoplasmic membrane in Escherichia coli. Binding of lipoprotein precursors to the peptidoglycan layer.

1982 ◽  
Vol 257 (1) ◽  
pp. 495-500
Author(s):  
S. Ichihara ◽  
M. Hussain ◽  
S. Mizushima
Microbiology ◽  
2006 ◽  
Vol 152 (8) ◽  
pp. 2405-2420 ◽  
Author(s):  
Anu Daniel ◽  
Aparna Singh ◽  
Lynette J. Crowther ◽  
Paula J. Fernandes ◽  
Wiebke Schreiber ◽  
...  

Typical enteropathogenic Escherichia coli strains express an established virulence factor belonging to the type IV pili family, called the bundle-forming pilus (BFP). BFP are present on the cell surface as bundled filamentous appendages, and are assembled and retracted by proteins encoded by the bfp operon. These proteins assemble to form a molecular machine. The BFP machine may be conceptually divided into three components: the cytoplasmic membrane (CM) subassembly, which is composed of CM proteins and cytoplasmic nucleotide-binding proteins; the outer membrane (OM) subassembly and the pilus itself. The authors have previously characterized the CM subassembly and the pilus. In this study, a more complete characterization of the OM subassembly was carried out using a combination of biochemical, biophysical and genetic approaches. It is reported that targeting of BfpG to the OM was influenced by the secretin BfpB. BfpG and BfpU interacted with the amino terminus of BfpB. BfpU had a complex cellular distribution pattern and, along with BfpB and BfpG, was part of the OM subassembly.


2020 ◽  
Author(s):  
Aruna Kumar ◽  
Kathleen Postle

ABSTRACTThe TonB system of Escherichia coli couples the protonmotive force of the cytoplasmic membrane to active transport of nutrients across the outer membrane. In the cytoplasmic membrane, this system consists of three known proteins, TonB, ExbB, and ExbD. ExbB and ExbD appear to harvest the protonmotive force and transmit it to TonB, which then makes direct physical contact with TonB-dependent active transport proteins in the outer membrane. Using two-dimensional gel electrophoresis, we found that ExbD exists as two different species with the same apparent molecular mass but with different pIs. The more basic ExbD species was consistently present, while the more acidic species arose when cells were starved for iron by the addition of iron chelators. The cause of the modification was, however, more complex than simple iron starvation. Absence of either TonB or ExbB protein also gave rise to modified ExbD under iron-replete conditions where the wild-type strain exhibited no ExbD modification. The effect of the tonB or exbB mutations were not entirely due to iron limitation since an equally iron-limited aroB mutation did not replicate the ExbD modification. This constitutes the first report of in vivo modification for any of the TonB system proteins.


1998 ◽  
Vol 180 (24) ◽  
pp. 6433-6439 ◽  
Author(s):  
Pierre Germon ◽  
Thierry Clavel ◽  
Anne Vianney ◽  
Raymond Portalier ◽  
Jean Claude Lazzaroni

ABSTRACT The Tol-Pal proteins of Escherichia coli are involved in maintaining outer membrane integrity. They form two complexes in the cell envelope. Transmembrane domains of TolQ, TolR, and TolA interact in the cytoplasmic membrane, while TolB and Pal form a complex near the outer membrane. The N-terminal transmembrane domain of TolA anchors the protein to the cytoplasmic membrane and interacts with TolQ and TolR. Extensive mutagenesis of the N-terminal part of TolA was carried out to characterize the residues involved in such processes. Mutations affecting the function of TolA resulted in a lack or an alteration in TolA-TolQ or TolR-TolA interactions but did not affect the formation of TolQ-TolR complexes. Our results confirmed the importance of residues serine 18 and histidine 22, which are part of an SHLS motif highly conserved in the TolA and the related TonB proteins from different organisms. Genetic suppression experiments were performed to restore the functional activity of some tolA mutants. The suppressor mutations all affected the first transmembrane helix of TolQ. These results confirmed the essential role of the transmembrane domain of TolA in triggering interactions with TolQ and TolR.


2021 ◽  
Vol 22 (22) ◽  
pp. 12101
Author(s):  
Elisa Consoli ◽  
Joen Luirink ◽  
Tanneke den Blaauwen

The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane β-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.


Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Madeleine Humphrey ◽  
Gerald J. Larrouy-Maumus ◽  
R. Christopher D. Furniss ◽  
Despoina A. I. Mavridou ◽  
Akshay Sabnis ◽  
...  

Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug-resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to bacterial death and lysis. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilized colistin-resistance (mcr) genes. Both these colistin-resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr −1, –1.5, −2, –3, −3.2 or −5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilization of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilization of the outer membrane of colistin-resistant isolates by the polymyxin is in turn sufficient to sensitize bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in these E. coli isolates is due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance.


2002 ◽  
Vol 184 (6) ◽  
pp. 1640-1648 ◽  
Author(s):  
Penelope I. Higgs ◽  
Tracy E. Letain ◽  
Kelley K. Merriam ◽  
Neal S. Burke ◽  
HaJeung Park ◽  
...  

ABSTRACT The Escherichia coli TonB protein serves to couple the cytoplasmic membrane proton motive force to active transport of iron-siderophore complexes and vitamin B12 across the outer membrane. Consistent with this role, TonB has been demonstrated to participate in strong interactions with both the cytoplasmic and outer membranes. The cytoplasmic membrane determinants for that interaction have been previously characterized in some detail. Here we begin to examine the nature of TonB interactions with the outer membrane. Although the presence of the siderophore enterochelin (also known as enterobactin) greatly enhanced detectable cross-linking between TonB and the outer membrane receptor, FepA, the absence of enterochelin did not prevent the localization of TonB to the outer membrane. Furthermore, the absence of FepA or indeed of all the iron-responsive outer membrane receptors did not alter this association of TonB with the outer membrane. This suggested that TonB interactions with the outer membrane were not limited to the TonB-dependent outer membrane receptors. Hydrolysis of the murein layer with lysozyme did not alter the distribution of TonB, suggesting that peptidoglycan was not responsible for the outer membrane association of TonB. Conversely, the interaction of TonB with the outer membrane was disrupted by the addition of 4 M NaCl, suggesting that these interactions were proteinaceous. Subsequently, two additional contacts of TonB with the outer membrane proteins Lpp and, putatively, OmpA were identified by in vivo cross-linking. These contacts corresponded to the 43-kDa and part of the 77-kDa TonB-specific complexes described previously. Surprisingly, mutations in these proteins individually did not appear to affect TonB phenotypes. These results suggest that there may be multiple redundant sites where TonB can interact with the outer membrane prior to transducing energy to the outer membrane receptors.


Sign in / Sign up

Export Citation Format

Share Document